Cited 4 time in
Transformer-based Efficient CSI Feedback for THz band FDD MIMO Systems
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ji, Dong Jin | - |
| dc.contributor.author | Chung, Byung Chang | - |
| dc.date.accessioned | 2024-01-24T05:00:31Z | - |
| dc.date.available | 2024-01-24T05:00:31Z | - |
| dc.date.issued | 2024-02 | - |
| dc.identifier.issn | 2162-2337 | - |
| dc.identifier.issn | 2162-2345 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/69427 | - |
| dc.description.abstract | Machine learning algorithms have been extensively explored for the feedback of multiple-input multiple-output (MIMO) channel state information (CSI) in orthogonal frequency division multiplexing (OFDM) systems. However, their viability in sixth-generation (6G) wireless communication systems, operating in the terahertz (THz) band, remains uncertain. To address this, we propose ChannelTransformer, a transformer-model-based CSI feedback scheme that incorporates multi-head self-attention and a CSI-feedback-aware transformer structure, and a lightweight user equipment(UE) model. Through simulations in the DeepMIMO O1 scenario at 140GHz, ChannelTransformer demonstrates superior performance in terms of normalized mean square error (NMSE) and cosine similarity across various feedback lengths compared to conventional schemes with a much smaller UE model size. IEEE | - |
| dc.format.extent | 1 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
| dc.title | Transformer-based Efficient CSI Feedback for THz band FDD MIMO Systems | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/LWC.2023.3329019 | - |
| dc.identifier.scopusid | 2-s2.0-85181817418 | - |
| dc.identifier.wosid | 001167560000029 | - |
| dc.identifier.bibliographicCitation | IEEE Wireless Communications Letters, v.13, no.2, pp 1 - 1 | - |
| dc.citation.title | IEEE Wireless Communications Letters | - |
| dc.citation.volume | 13 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 1 | - |
| dc.citation.endPage | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordAuthor | 6G mobile communication | - |
| dc.subject.keywordAuthor | Antenna arrays | - |
| dc.subject.keywordAuthor | channel feedback | - |
| dc.subject.keywordAuthor | Computational modeling | - |
| dc.subject.keywordAuthor | Computer architecture | - |
| dc.subject.keywordAuthor | deep learning | - |
| dc.subject.keywordAuthor | Machine learning for communications | - |
| dc.subject.keywordAuthor | multiple-input multiple-output | - |
| dc.subject.keywordAuthor | Receiving antennas | - |
| dc.subject.keywordAuthor | Tensors | - |
| dc.subject.keywordAuthor | Transformers | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
