Detailed Information

Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

Transformer-based Efficient CSI Feedback for THz band FDD MIMO Systems

Full metadata record
DC Field Value Language
dc.contributor.authorJi, Dong Jin-
dc.contributor.authorChung, Byung Chang-
dc.date.accessioned2024-01-24T05:00:31Z-
dc.date.available2024-01-24T05:00:31Z-
dc.date.issued2024-02-
dc.identifier.issn2162-2337-
dc.identifier.issn2162-2345-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/69427-
dc.description.abstractMachine learning algorithms have been extensively explored for the feedback of multiple-input multiple-output (MIMO) channel state information (CSI) in orthogonal frequency division multiplexing (OFDM) systems. However, their viability in sixth-generation (6G) wireless communication systems, operating in the terahertz (THz) band, remains uncertain. To address this, we propose ChannelTransformer, a transformer-model-based CSI feedback scheme that incorporates multi-head self-attention and a CSI-feedback-aware transformer structure, and a lightweight user equipment(UE) model. Through simulations in the DeepMIMO O1 scenario at 140GHz, ChannelTransformer demonstrates superior performance in terms of normalized mean square error (NMSE) and cosine similarity across various feedback lengths compared to conventional schemes with a much smaller UE model size. IEEE-
dc.format.extent1-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleTransformer-based Efficient CSI Feedback for THz band FDD MIMO Systems-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LWC.2023.3329019-
dc.identifier.scopusid2-s2.0-85181817418-
dc.identifier.wosid001167560000029-
dc.identifier.bibliographicCitationIEEE Wireless Communications Letters, v.13, no.2, pp 1 - 1-
dc.citation.titleIEEE Wireless Communications Letters-
dc.citation.volume13-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthor6G mobile communication-
dc.subject.keywordAuthorAntenna arrays-
dc.subject.keywordAuthorchannel feedback-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorComputer architecture-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorMachine learning for communications-
dc.subject.keywordAuthormultiple-input multiple-output-
dc.subject.keywordAuthorReceiving antennas-
dc.subject.keywordAuthorTensors-
dc.subject.keywordAuthorTransformers-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Byung Chang photo

Chung, Byung Chang
IT공과대학 (AI정보공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE