Detailed Information

Cited 4 time in webofscience Cited 5 time in scopus
Metadata Downloads

Physicochemical, electrochemical, and biological characterization of field assisted gold nanocluster-coated barium titanate nanoparticles for biomedical applications

Full metadata record
DC Field Value Language
dc.contributor.authorSood, Ankur-
dc.contributor.authorSinghmar, Ritu-
dc.contributor.authorSahoo, Sumanta-
dc.contributor.authorLee, Dahae-
dc.contributor.authorKim, Chul Min-
dc.contributor.authorKumar, Anuj-
dc.contributor.authorHan, Sung Soo-
dc.date.accessioned2024-01-03T05:00:16Z-
dc.date.available2024-01-03T05:00:16Z-
dc.date.issued2024-01-
dc.identifier.issn2050-7518-
dc.identifier.issn2050-750X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/69067-
dc.description.abstractFluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface. © 2024 The Royal Society of Chemistry.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.titlePhysicochemical, electrochemical, and biological characterization of field assisted gold nanocluster-coated barium titanate nanoparticles for biomedical applications-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/d3tb01928d-
dc.identifier.scopusid2-s2.0-85180313443-
dc.identifier.wosid001129342300001-
dc.identifier.bibliographicCitationJournal of Materials Chemistry B, v.12, no.2, pp 525 - 539-
dc.citation.titleJournal of Materials Chemistry B-
dc.citation.volume12-
dc.citation.number2-
dc.citation.startPage525-
dc.citation.endPage539-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.subject.keywordPlusMETAL NANOCLUSTERS-
dc.subject.keywordPlusFLUORESCENT-
dc.subject.keywordPlusSUPERCAPACITOR-
Files in This Item
There are no files associated with this item.
Appears in
Collections
융합기술공과대학 > Division of Mechatronics Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Chul Min photo

Kim, Chul Min
IT공과대학 (메카트로닉스공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE