Detailed Information

Cited 9 time in webofscience Cited 8 time in scopus
Metadata Downloads

Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Deokyeol-
dc.contributor.authorPark, Sujeong-
dc.contributor.authorEvelina, Grace-
dc.contributor.authorKim, Suhyeung-
dc.contributor.authorPark, Heeyoung-
dc.contributor.authorLee, Je Min-
dc.contributor.authorKim, Sun-Ki-
dc.contributor.authorKim, In Jung-
dc.contributor.authorOh, Eun Joong-
dc.contributor.authorKim, Soo Rin-
dc.date.accessioned2023-12-27T06:30:21Z-
dc.date.available2023-12-27T06:30:21Z-
dc.date.issued2024-02-
dc.identifier.issn0960-8524-
dc.identifier.issn1873-2976-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/69013-
dc.description.abstractMucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials. © 2023 Elsevier Ltd-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleBioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.biortech.2023.130158-
dc.identifier.scopusid2-s2.0-85179480795-
dc.identifier.wosid001140138200001-
dc.identifier.bibliographicCitationBioresource Technology, v.393-
dc.citation.titleBioresource Technology-
dc.citation.volume393-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.subject.keywordAuthorCRISPR/Cas9-
dc.subject.keywordAuthorDelta-integration strategy-
dc.subject.keywordAuthorFruit waste-
dc.subject.keywordAuthormeso-galactarate-
dc.subject.keywordAuthorMicrobial bioconversion-
dc.subject.keywordAuthorPectin-rich biomass-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 식품공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, In Jung photo

Kim, In Jung
농업생명과학대학 (식품공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE