Detailed Information

Cited 1 time in webofscience Cited 4 time in scopus
Metadata Downloads

A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem

Full metadata record
DC Field Value Language
dc.contributor.authorVinh, Nguyen The-
dc.contributor.authorHoai, Pham Thi-
dc.contributor.authorDung, Le Anh-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2023-12-18T06:00:54Z-
dc.date.available2023-12-18T06:00:54Z-
dc.date.issued2023-12-
dc.identifier.issn1439-8516-
dc.identifier.issn1439-7617-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68947-
dc.description.abstractIn this paper, by combining the inertial technique and the gradient descent method with Polyak’s stepsizes, we propose a novel inertial self-adaptive gradient algorithm to solve the split feasibility problem in Hilbert spaces and prove some strong and weak convergence theorems of our method under standard assumptions. We examine the performance of our method on the sparse recovery problem beside an example in an infinite dimensional Hilbert space with synthetic data and give some numerical results to show the potential applicability of the proposed method and comparisons with related methods emphasize it further. © 2023, Springer-Verlag GmbH Germany & The Editorial Office of AMS.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleA New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/s10114-023-2311-7-
dc.identifier.scopusid2-s2.0-85178932989-
dc.identifier.wosid001154453100003-
dc.identifier.bibliographicCitationActa Mathematica Sinica, English Series, v.39, no.12, pp 2489 - 2506-
dc.citation.titleActa Mathematica Sinica, English Series-
dc.citation.volume39-
dc.citation.number12-
dc.citation.startPage2489-
dc.citation.endPage2506-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusRELAXED CQ ALGORITHM-
dc.subject.keywordPlusNONEXPANSIVE-MAPPINGS-
dc.subject.keywordPlusITERATIVE ALGORITHMS-
dc.subject.keywordPlusFIXED-POINTS-
dc.subject.keywordPlusCONVERGENCE-
dc.subject.keywordPlusSETS-
dc.subject.keywordAuthor47H04-
dc.subject.keywordAuthor47H10-
dc.subject.keywordAuthor49J40-
dc.subject.keywordAuthorCQ algorithm-
dc.subject.keywordAuthorHilbert space-
dc.subject.keywordAuthorsparse recovery problem-
dc.subject.keywordAuthorSplit feasibility problem-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE