Detailed Information

Cited 4 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems

Full metadata record
DC Field Value Language
dc.contributor.authorJanngam, Kobkoon-
dc.contributor.authorSuantai, Suthep-
dc.contributor.authorCho, Yeol Je-
dc.contributor.authorKaewkhao, Attapol-
dc.contributor.authorWattanataweekul, Rattanakorn-
dc.date.accessioned2023-12-13T03:35:02Z-
dc.date.available2023-12-13T03:35:02Z-
dc.date.issued2023-07-
dc.identifier.issn2227-7390-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68758-
dc.description.abstractFixed-point theory plays many important roles in real-world problems, such as image processing, classification problem, etc. This paper introduces and analyzes a new, accelerated common-fixed-point algorithm using the viscosity approximation method and then employs it to solve convex bilevel optimization problems. The proposed method was applied to data classification with the Diabetes, Heart Disease UCI and Iris datasets. According to the data classification experiment results, the proposed algorithm outperformed the others in the literature.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleA Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/math11143241-
dc.identifier.wosid001069926900001-
dc.identifier.bibliographicCitationMathematics, v.11, no.14-
dc.citation.titleMathematics-
dc.citation.volume11-
dc.citation.number14-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusEXTREME LEARNING-MACHINE-
dc.subject.keywordPlusFORWARD-BACKWARD ALGORITHM-
dc.subject.keywordPlusFIXED-POINTS-
dc.subject.keywordPlusAPPROXIMATION METHODS-
dc.subject.keywordPlusMONOTONE-OPERATORS-
dc.subject.keywordPlus1ST-ORDER METHOD-
dc.subject.keywordPlusCONVERGENCE-
dc.subject.keywordPlusITERATION-
dc.subject.keywordPlusREGRESSION-
dc.subject.keywordPlusSHRINKAGE-
dc.subject.keywordAuthorclassification problems-
dc.subject.keywordAuthorconvex bilevel optimization-
dc.subject.keywordAuthorforward-backward algorithm-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE