Detailed Information

Cited 35 time in webofscience Cited 38 time in scopus
Metadata Downloads

Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks

Full metadata record
DC Field Value Language
dc.contributor.authorMaurya, A. K.-
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorBhavani, A. Geetha-
dc.contributor.authorJae-Keun, Hong-
dc.contributor.authorYeom, Jong-Taek-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T13:01:55Z-
dc.date.available2022-12-26T13:01:55Z-
dc.date.issued2020-03-
dc.identifier.issn0304-3886-
dc.identifier.issn1873-5738-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/6856-
dc.description.abstractThe relationship between the fiber diameter and electrospinning process variables is complicated and nonlinear. In this study, we developed an artificial neural network model to correlate the relationships between the electrospinning process variables (voltage, flow rate, distance, and collector rotating speed) and the fiber diameter of Ferrofluid/polyvinyl alcohol. The model was able to find the significance of each process variable on fiber diameter for the desired experimental set by both qualitative (index of relative importance) and quantitative analysis. We developed a user interface design of the ANN model for easy use.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleModeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.elstat.2020.103425-
dc.identifier.scopusid2-s2.0-85079351660-
dc.identifier.wosid000522093200007-
dc.identifier.bibliographicCitationJournal of Electrostatics, v.104-
dc.citation.titleJournal of Electrostatics-
dc.citation.volume104-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusBACKPROPAGATION ALGORITHM-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordAuthorProcessing parameter-
dc.subject.keywordAuthorFiber diameter-
dc.subject.keywordAuthorArtificial neural network-
dc.subject.keywordAuthorSensitivity analysis-
dc.subject.keywordAuthorIndex of relative importance-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE