Cited 0 time in
Neural Network Models for Estimating the Impact of Physicochemical and Operational Parameters on the Specific Capacity of Activated-Carbon-Based Supercapacitors
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Reddy, B. S. | - |
| dc.contributor.author | Maurya, A. K. | - |
| dc.contributor.author | Paturi, Uma Maheshwera Reddy | - |
| dc.contributor.author | Sung, Jaekyung | - |
| dc.contributor.author | Narayana, P. L. | - |
| dc.contributor.author | Ahn, Hyo-Jun | - |
| dc.contributor.author | Cho, K. K. | - |
| dc.contributor.author | Reddy, N. S. | - |
| dc.date.accessioned | 2023-11-02T04:41:42Z | - |
| dc.date.available | 2023-11-02T04:41:42Z | - |
| dc.date.issued | 2023-09 | - |
| dc.identifier.issn | 0887-0624 | - |
| dc.identifier.issn | 1520-5029 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/68290 | - |
| dc.description.abstract | An artificial neural network (ANN) model is developed in this study to predict and analyze the specific capacitance of activated-carbon-based supercapacitors by utilizing a 12-dimensional data set related to physicochemical and operational parameters from the literature. A total of 61 ANN model architectures are constructed using a backpropagation algorithm to estimate the specific capacity. The 12-11-11-11-1 ANN architecture achieves good accuracy, with an average error of 5.8 and adjusted R-2 of 0.99. A standalone ANN software is developed for modeling specific capacity for infinite combinations of physicochemical and operational parameters. The findings illustrate the significance of structural characteristics and pyrolytic and oxidized N groups in determining the supercapacitor performance. Furthermore, the suggested approach can potentially guide future experiments to choose high-performance activated-carbon-based supercapacitor electrodes based on desired specific capacity. | - |
| dc.format.extent | 11 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Neural Network Models for Estimating the Impact of Physicochemical and Operational Parameters on the Specific Capacity of Activated-Carbon-Based Supercapacitors | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1021/acs.energyfuels.3c01906 | - |
| dc.identifier.scopusid | 2-s2.0-85174234614 | - |
| dc.identifier.wosid | 001067268700001 | - |
| dc.identifier.bibliographicCitation | Energy & Fuels, v.37, no.19, pp 15084 - 15094 | - |
| dc.citation.title | Energy & Fuels | - |
| dc.citation.volume | 37 | - |
| dc.citation.number | 19 | - |
| dc.citation.startPage | 15084 | - |
| dc.citation.endPage | 15094 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordPlus | PREDICTION | - |
| dc.subject.keywordPlus | OXYGEN | - |
| dc.subject.keywordPlus | ELECTRODES | - |
| dc.subject.keywordPlus | ADSORPTION | - |
| dc.subject.keywordPlus | FRAMEWORKS | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
