Detailed Information

Cited 8 time in webofscience Cited 10 time in scopus
Metadata Downloads

Sub-20 nm ultrathin perfluorosulfonic acid-grafted graphene oxide composite membranes for vanadium redox flow batteries

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jiwoo-
dc.contributor.authorKim, Jongmin Q.-
dc.contributor.authorKo, Hansol-
dc.contributor.authorHwang, Inhyeok-
dc.contributor.authorLee, Yoonki-
dc.contributor.authorKim, Kihyun-
dc.contributor.authorSo, Soonyong-
dc.contributor.authorChoi, Siyoung Q.-
dc.date.accessioned2023-10-25T08:41:20Z-
dc.date.available2023-10-25T08:41:20Z-
dc.date.issued2023-12-
dc.identifier.issn0376-7388-
dc.identifier.issn1873-3123-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68242-
dc.description.abstractPerfluorosulfonic acid (PFSA) membranes, such as Nafion, are widely used in vanadium redox flow batteries (VRFBs) because of their high proton conduction through the ion channels and excellent chemical stability. However, the high vanadium permeability of PFSA membranes induced by the randomly interconnected channels limits efficient cell operation. In this work, we demonstrate a sub-20 nm ultrathin PFSA-grafted graphene oxide/PFSA (PFSA-g-GO/PFSA) composite membrane with highly aligned ion channel morphology, which results in a 100-fold improvement in proton/vanadium ion selectivity compared to 25 μm-thick Nafion 211. In addition, the PFSA-g-GO nanosheets physically reinforce the ultrathin membrane while enabling the proton transport through the grafted PFSA ionomers, leading to stable cell operation at overall current densities from 40 to 200 mA cm−2. Especially, at a high current density of 200 mA cm−2, the PFSA-g-GO/PFSA composite membrane shows an energy efficiency (EE) of 78%, which is higher than that of Nafion 211, indicating its potential as an ion-selective membrane for VRFB. © 2023 The Authors-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleSub-20 nm ultrathin perfluorosulfonic acid-grafted graphene oxide composite membranes for vanadium redox flow batteries-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.memsci.2023.122150-
dc.identifier.scopusid2-s2.0-85173285924-
dc.identifier.wosid001103901800001-
dc.identifier.bibliographicCitationJournal of Membrane Science, v.688-
dc.citation.titleJournal of Membrane Science-
dc.citation.volume688-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusNAFION MEMBRANES-
dc.subject.keywordPlusHYBRID MEMBRANE-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordAuthorIon-selective membrane-
dc.subject.keywordAuthorPerfluorosulfonic acid-grafted graphene oxide-
dc.subject.keywordAuthorUltrathin membrane-
dc.subject.keywordAuthorVanadium redox flow battery-
dc.subject.keywordAuthorWell-ordered ion channel-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Ki Hyun photo

Kim, Ki Hyun
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE