Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimal approximation by one Gaussian function to probability density functions

Full metadata record
DC Field Value Language
dc.contributor.author김광일-
dc.contributor.author조승연-
dc.contributor.author전두배-
dc.date.accessioned2023-10-20T08:42:47Z-
dc.date.available2023-10-20T08:42:47Z-
dc.date.issued2023-09-
dc.identifier.issn1226-6973-
dc.identifier.issn2287-2833-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68180-
dc.description.abstractIn this paper, we introduce the optimal approximation by a Gaussian function for a probability density function. We show that the ap- proximation can be obtained by solving a non-linear system of parameters of Gaussian function. Then, to understand the non-normality of the em- pirical distributions observed in financial markets, we consider the nearly Gaussian function that consists of an optimally approximated Gaussian function and a small periodically oscillating density function. We show that, depending on the parameters of the oscillation, the nearly Gaussian functions can have fairly thick heavy tails.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisher영남수학회-
dc.titleOptimal approximation by one Gaussian function to probability density functions-
dc.title.alternativeOptimal approximation by one Gaussian function to probability density functions-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitationEast Asian Mathematical Journal, v.39, no.5, pp 537 - 547-
dc.citation.titleEast Asian Mathematical Journal-
dc.citation.volume39-
dc.citation.number5-
dc.citation.startPage537-
dc.citation.endPage547-
dc.identifier.kciidART003004281-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorOptimal approximation-
dc.subject.keywordAuthornon-normal distribution-
dc.subject.keywordAuthorperiodically oscillating distribution-
dc.subject.keywordAuthornearly-Gaussian function.-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Seung Yeon photo

Cho, Seung Yeon
자연과학대학 (수학물리학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE