Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Superelastic properties of biomedical Ti–Zr–Nb–Sn highly porous shape memory alloys prepared by fiber metallurgy

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Shuanglei-
dc.contributor.authorWang, Xu-
dc.contributor.authorKim, Yeon-Wook-
dc.contributor.authorYeom, Jong-Taek-
dc.contributor.authorNam, Tae-Hyun-
dc.date.accessioned2023-10-10T09:40:39Z-
dc.date.available2023-10-10T09:40:39Z-
dc.date.issued2023-12-
dc.identifier.issn0966-9795-
dc.identifier.issn1879-0216-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68065-
dc.description.abstractArtificial bone substitutes to satisfy the specific properties of cancellous bone for the repair of bone defects are highly desirable. In this study, combining the unique superelasticity and high porosity, biomedical Ti–Zr–Nb–Sn highly porous shape memory alloys (HPSMAs) were prepared by fiber metallurgy for the potential repair of damaged cancellous bone. Three-dimensional and open porous networks constructed by fiber-fiber bonds were obtained in the HPSMAs with a porosity of 79.5%. The recovery strain at room temperature was improved from 2.3% in the as-sintered specimen to 3.8% in the 700 °C solution-treated one by adjusting the transformation temperature. The mechanical performances in the Ti–Zr–Nb–Sn HPSMAs were similar to those of cancellous bone. Stable superelastic behaviors with a recovery strain of 4% were achieved at room temperature after cycle training. The Ti–Zr–Nb–Sn HPSMAs satisfy those specific properties of cancellous bone and show great potential in the repair of cancellous bone defects. © 2023-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleSuperelastic properties of biomedical Ti–Zr–Nb–Sn highly porous shape memory alloys prepared by fiber metallurgy-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.intermet.2023.108075-
dc.identifier.scopusid2-s2.0-85172882672-
dc.identifier.wosid001087162100001-
dc.identifier.bibliographicCitationIntermetallics, v.163-
dc.citation.titleIntermetallics-
dc.citation.volume163-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSTRAIN GLASS-
dc.subject.keywordPlusNITI ALLOY-
dc.subject.keywordPlusBONE-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusFOAMS-
dc.subject.keywordAuthorA. Porous materials-
dc.subject.keywordAuthorB. mechanical properties-
dc.subject.keywordAuthorG. Biomedical-
dc.subject.keywordAuthorShape-memory alloys-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Nam, Tae Hyeon photo

Nam, Tae Hyeon
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE