Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Greatest Ricci lower bounds of projective horospherical manifolds of Picard number one

Full metadata record
DC Field Value Language
dc.contributor.authorHwang, DongSeon-
dc.contributor.authorKim, Shin-young-
dc.contributor.authorPark, Kyeong-Dong-
dc.date.accessioned2023-08-29T08:40:23Z-
dc.date.available2023-08-29T08:40:23Z-
dc.date.issued2023-09-
dc.identifier.issn0232-704X-
dc.identifier.issn1572-9060-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/67652-
dc.description.abstractA horospherical variety is a normal G -variety such that a connected reductive algebraic group G acts with an open orbit isomorphic to a torus bundle over a rational homogeneous manifold. The projective horospherical manifolds of Picard number one are classified by Pasquier, and it turned out that the automorphism groups of all nonhomogeneous ones are non-reductive, which implies that they admit no K & auml;hler-Einstein metrics. As a numerical measure of the extent to which a Fano manifold is close to be K & auml;hler-Einstein, we compute the greatest Ricci lower bounds of projective horospherical manifolds of Picard number one using the barycenter of each moment polytope with respect to the Duistermaat-Heckman measure based on a recent work of Delcroix and Hultgren. In particular, the greatest Ricci lower bound of the odd symplectic Grassmannian SGr(n, 2n + 1) can be arbitrarily close to zero as n grows.-
dc.language영어-
dc.language.isoENG-
dc.publisherKluwer Academic Publishers-
dc.titleGreatest Ricci lower bounds of projective horospherical manifolds of Picard number one-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s10455-023-09915-y-
dc.identifier.scopusid2-s2.0-85167817995-
dc.identifier.wosid001044757100001-
dc.identifier.bibliographicCitationAnnals of Global Analysis and Geometry, v.64, no.2-
dc.citation.titleAnnals of Global Analysis and Geometry-
dc.citation.volume64-
dc.citation.number2-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusKAHLER-EINSTEIN METRICS-
dc.subject.keywordPlusK-STABILITY-
dc.subject.keywordPlusHOMOGENEOUS SPACES-
dc.subject.keywordPlusFANO MANIFOLDS-
dc.subject.keywordPlusVARIETIES-
dc.subject.keywordPlusCURVATURE-
dc.subject.keywordPlusEMBEDDINGS-
dc.subject.keywordPlusEQUATIONS-
dc.subject.keywordPlusRIGIDITY-
dc.subject.keywordPlusLIMITS-
dc.subject.keywordAuthorGreatest Ricci lower bounds-
dc.subject.keywordAuthorHorospherical varieties-
dc.subject.keywordAuthorAlgebraic moment polytopes-
dc.subject.keywordAuthorKahler-Einstein metrics-
dc.subject.keywordAuthorOdd symplectic Grassmannians-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Kyeong-Dong photo

Park, Kyeong-Dong
자연과학대학 (수학물리학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE