Detailed Information

Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads

An Empirical Study on the Performance of Individual Issue Label Prediction

Full metadata record
DC Field Value Language
dc.contributor.authorHeo, Jueun-
dc.contributor.authorLee, Seonah-
dc.date.accessioned2023-08-17T02:40:12Z-
dc.date.available2023-08-17T02:40:12Z-
dc.date.issued2023-08-
dc.identifier.issn2574-3848-
dc.identifier.issn2574-3864-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/67584-
dc.description.abstractIn GitHub, open-source software (OSS) developers label issue reports. As issue labeling is a labor-intensive manual task, automatic approaches have developed to label issue reports. However, those approaches have shown limited performance. Therefore, it is necessary to analyze the performance of predicting labels for an issue report. Understanding labels with high performance and those with low performance can help improve the performance of automatic issue labeling tasks. In this paper, we investigate the performance of individual label prediction. Our investigation uncovers labels with high performance and those with low performance. Our results can help researchers to understand the different characteristics of labels and help developers to develop a unified approach that combines several effective approaches for different kinds of issues. © 2023 IEEE.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleAn Empirical Study on the Performance of Individual Issue Label Prediction-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1109/MSR59073.2023.00041-
dc.identifier.scopusid2-s2.0-85166290613-
dc.identifier.wosid001032697200027-
dc.identifier.bibliographicCitationProceedings - 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023, pp 228 - 233-
dc.citation.titleProceedings - 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023-
dc.citation.startPage228-
dc.citation.endPage233-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordAuthorEmpirical Study-
dc.subject.keywordAuthorGithub-
dc.subject.keywordAuthorIssue Classification-
dc.subject.keywordAuthorIssue Report-
dc.subject.keywordAuthorLabel Prediction-
dc.subject.keywordAuthorLabeling-
dc.subject.keywordAuthorPerformance Analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > AI융합공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seon Ah photo

Lee, Seon Ah
IT공과대학 (소프트웨어공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE