Cited 36 time in
Patterned anodes with an activated carbon nanotube protective layer for zinc-ion hybrid capacitors
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Heo, Heeyeon | - |
| dc.contributor.author | Yun, Kihyuk | - |
| dc.contributor.author | An, Geon-Hyoung | - |
| dc.date.accessioned | 2023-08-17T01:41:24Z | - |
| dc.date.available | 2023-08-17T01:41:24Z | - |
| dc.date.issued | 2023-11 | - |
| dc.identifier.issn | 0925-8388 | - |
| dc.identifier.issn | 1873-4669 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/67516 | - |
| dc.description.abstract | Zinc-ion hybrid supercapacitors (ZIHCs) have appeared as an encouraging type of electrochemical energy storage system due to their high-power density, lifespan, and sustainability. Nevertheless, ZIHCs suffer from poor cycling stability owing to their limited active sites, low wettability, and irreversible Zn dendrite formation and corrosion at the anode, which results in a low specific capacity. To address this issue, research has been conducted to introduce protective layers such as carbon, ceramics, and polymers onto zinc anodes, which have improved their safety. However, achieving excellent rate-performance remains insufficient. Thus, this study fabricated a patterned anode with an activated carbon nanotube (CNT) coating. Surface activation of CNT is achieved using plasma treatment. The fabricated ZIHC exhibited a specific capacity of 136.1 mA h g−1 and 83.6 mA h g−1 at 0.5 A g−1 and 40 A g−1, respectively. It also showed enhanced energy densities of 217 W h kg−1 and 167 W h kg−1 at 800 W kg−1 and 8000 W kg−1, respectively. Additionally, the ZIHC demonstrated long-term stability with a capacity retention of 99% after 7000 cycles at 10.0 A g−1, which can be attributed to its improved ion diffusion capability, reduced interfacial resistance, and superior electrochemical stability of the anode. © 2023 Elsevier B.V. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Patterned anodes with an activated carbon nanotube protective layer for zinc-ion hybrid capacitors | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.1016/j.jallcom.2023.171229 | - |
| dc.identifier.scopusid | 2-s2.0-85166200367 | - |
| dc.identifier.wosid | 001055959000001 | - |
| dc.identifier.bibliographicCitation | Journal of Alloys and Compounds, v.965 | - |
| dc.citation.title | Journal of Alloys and Compounds | - |
| dc.citation.volume | 965 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
| dc.subject.keywordAuthor | Anode | - |
| dc.subject.keywordAuthor | Patterned electrode, Protective layer | - |
| dc.subject.keywordAuthor | Zinc-ion hybrid supercapacitors | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
