Cited 5 time in
Hierarchically Nanoporous Pyropolymers Derived from Waste Pinecone as a Pseudocapacitive Electrode for Lithium Ion Hybrid Capacitors
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hyun, Jong Chan | - |
| dc.contributor.author | Kwak, Jin Hwan | - |
| dc.contributor.author | Lee, Sang Moon | - |
| dc.contributor.author | Choi, Jaewon | - |
| dc.contributor.author | Lee, Kyu-Tae | - |
| dc.contributor.author | Yun, Young Soo | - |
| dc.date.accessioned | 2022-12-26T12:48:18Z | - |
| dc.date.available | 2022-12-26T12:48:18Z | - |
| dc.date.issued | 2020-04-02 | - |
| dc.identifier.issn | 2045-2322 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/6731 | - |
| dc.description.abstract | The non-aqueous asymmetric lithium ion hybrid capacitor (LIHC) is a tactical energy storage device composed of a faradic and non-faradic electrode pair, which aims to achieve both high energy and great power densities. On the other hand, the different types of electrode combinations cause severe imbalances in energy and power capabilities, leading to poor electrochemical performance. Herein, waste pinecone-derived hierarchically porous pyropolymers (WP-HPPs) were fabricated as a surface-driven pseudocapacitive electrode, which has the advantages of both faradic and non-faradic electrodes. The unique materials properties of WP-HPPs possessing high effective surface areas and hierarchically open nanopores led to high specific capacities of similar to 412 mAh g(-1) and considerable rate/cycling performance as a cathode for LIHCs. In particular, nanometer-scale pores, approximately 3nm in size, plays a key role in the pseudocapacitive charge storage behaviors because open nanopores can transport solvated Li-ions easily into the inside of complex carbon structures and a large specific surface area can be provided by the effective active surface for charge storage. In addition, WP-HPP-based asymmetric LIHCs assembled with a pseudocapacitive counterpart demonstrated feasible electrochemical performance, such as maximum specific energy and specific power of similar to 340Whkg(-1) and similar to 11,000Wkg(-1), respectively, with significant cycling stability. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | NATURE PORTFOLIO | - |
| dc.title | Hierarchically Nanoporous Pyropolymers Derived from Waste Pinecone as a Pseudocapacitive Electrode for Lithium Ion Hybrid Capacitors | - |
| dc.type | Article | - |
| dc.publisher.location | 독일 | - |
| dc.identifier.doi | 10.1038/s41598-020-62459-0 | - |
| dc.identifier.scopusid | 2-s2.0-85082980257 | - |
| dc.identifier.wosid | 000540497600024 | - |
| dc.identifier.bibliographicCitation | SCIENTIFIC REPORTS, v.10, no.1 | - |
| dc.citation.title | SCIENTIFIC REPORTS | - |
| dc.citation.volume | 10 | - |
| dc.citation.number | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
| dc.subject.keywordPlus | HIGH-POWER | - |
| dc.subject.keywordPlus | CARBON NANOSHEETS | - |
| dc.subject.keywordPlus | GRAPHENE COMPOSITE | - |
| dc.subject.keywordPlus | ACTIVATED CARBON | - |
| dc.subject.keywordPlus | POROUS MATERIALS | - |
| dc.subject.keywordPlus | ENERGY-STORAGE | - |
| dc.subject.keywordPlus | ANODE | - |
| dc.subject.keywordPlus | BATTERIES | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
