Detailed Information

Cited 22 time in webofscience Cited 23 time in scopus
Metadata Downloads

Metal ion capacitor composed of the thin-walled surfaces enabling high-rate performance and long cycling stability

Full metadata record
DC Field Value Language
dc.contributor.authorAn, Geon-Hyoung-
dc.date.accessioned2022-12-26T12:47:25Z-
dc.date.available2022-12-26T12:47:25Z-
dc.date.issued2020-05-
dc.identifier.issn1567-1739-
dc.identifier.issn1878-1675-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/6636-
dc.description.abstractElectrochemical capacitors (referred to as supercapacitors) have high power density, long cycling stability, and are eco-friendly for use in electronic applications. The proper and stable utilization of supercapacitor systems can expand the practical scope of energy-powering applications in various device platforms. Nevertheless, the low energy density of conventional oxide and sulfide electrode materials still limits the practical realization of supercapacitor devices in real electronic applications. This limitation results from the poor surface stability, structural collapse, and low electrical conductivity of the oxide and sulfide materials. Single metal electrodes with multivalent metal ions exhibit promising energy-storing kinetics and may be viable alternatives to these oxide and sulfide electrode materials. Here, we report a metal zinc (Zn) electrode supercapacitor (ZIC) consisting of a thin-walled architecture as an electrode by means of a voltage-controlled electroplating method. The optimized ZIC exhibited excellent pseudo-capacitive performance, excellent high-rate performance, and an outstanding cycling stability.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherThe Korean Physical Society-
dc.titleMetal ion capacitor composed of the thin-walled surfaces enabling high-rate performance and long cycling stability-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1016/j.cap.2020.02.010-
dc.identifier.scopusid2-s2.0-85079842392-
dc.identifier.wosid000521530100001-
dc.identifier.bibliographicCitationCurrent Applied Physics, v.20, no.5, pp 605 - 610-
dc.citation.titleCurrent Applied Physics-
dc.citation.volume20-
dc.citation.number5-
dc.citation.startPage605-
dc.citation.endPage610-
dc.type.docTypeArticle-
dc.identifier.kciidART002588397-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusELECTRODE MATERIAL-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusLIFE-
dc.subject.keywordAuthorSupercapacitor-
dc.subject.keywordAuthorMetal ion-
dc.subject.keywordAuthorThin-walled surface-
dc.subject.keywordAuthorIonic electronic transport-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE