Detailed Information

Cited 10 time in webofscience Cited 10 time in scopus
Metadata Downloads

Investigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework

Full metadata record
DC Field Value Language
dc.contributor.authorEjtehadi, Omid-
dc.contributor.authorRahimi, Amin-
dc.contributor.authorMyong, R. S.-
dc.date.accessioned2022-12-26T12:31:27Z-
dc.date.available2022-12-26T12:31:27Z-
dc.date.issued2020-09-
dc.identifier.issn0032-5910-
dc.identifier.issn1873-328X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/6245-
dc.description.abstractWe investigate a trifold interaction mechanism of shock, vortex, and dust by solving the dusty Schardin's problem. A modal discontinuous Galerkin method was developed for solving the two-fluid model of the dusty gases. We focused on larger-scale wave patterns and smaller-scale vortexlets under the addition of dust particles. The dynamics of the shock-vortex interaction in a dusty medium was found substantially different from a pure gas equivalent. The main differences arc the acceleration or deceleration of the shock waves, and attenuation or diminishing of the slip lines. It was also demonstrated how the solid phase with various particulate loadings and particle diameters affects the dynamics of the vortexlets. Two different trends related to the transient formation and attenuation of the main vortex and vortexlets were identified. It was shown that the enstrophy behavior is directly affected by the diameter and particulate loading of particles that are seeded in the domain. (C) 2020 Elsevier B.V. All rights reserved.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleInvestigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.powtec.2020.07.041-
dc.identifier.scopusid2-s2.0-85088298280-
dc.identifier.wosid000577423700013-
dc.identifier.bibliographicCitationPowder Technology, v.374, pp 121 - 138-
dc.citation.titlePowder Technology-
dc.citation.volume374-
dc.citation.startPage121-
dc.citation.endPage138-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusSOUND GENERATION-
dc.subject.keywordPlusPARTICLE DISPERSION-
dc.subject.keywordPlusSOLID PARTICLES-
dc.subject.keywordPlusKINETIC-THEORY-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusWAVE-
dc.subject.keywordPlusREFLECTION-
dc.subject.keywordPlusTURBULENT-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorDusty gas-
dc.subject.keywordAuthorTwo-fluid model-
dc.subject.keywordAuthorShock-vortex interaction-
dc.subject.keywordAuthorDust-vortexlet interaction-
dc.subject.keywordAuthorDiscontinuous Galerkin-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Myong, Rho Shin photo

Myong, Rho Shin
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE