Cited 25 time in
Improved bootstrap confidence intervals for the process capability index C-pk
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Park, Chanseok | - |
| dc.contributor.author | Dey, Sanku | - |
| dc.contributor.author | Ouyang, Linhan | - |
| dc.contributor.author | Byun, Jai-Hyun | - |
| dc.contributor.author | Leeds, Mark | - |
| dc.date.accessioned | 2022-12-26T12:17:44Z | - |
| dc.date.available | 2022-12-26T12:17:44Z | - |
| dc.date.issued | 2020-10-02 | - |
| dc.identifier.issn | 0361-0918 | - |
| dc.identifier.issn | 1532-4141 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/6083 | - |
| dc.description.abstract | The process capability index, C-pk, is a useful tool for assessing the capability of a manufacturing process. There exist three well-known confidence intervals for the process capability index. These intervals are based on the standard bootstrap, the percentile bootstrap and the bias-corrected percentile bootstrap, respectively. We propose three variants of these bootstrap confidence intervals where each of the three intervals are modified in a particular way. Extensive Monte Carlo simulations are carried out and the results indicate that the three proposed bootstrap methods are generally preferred over the corresponding original schemes. | - |
| dc.format.extent | 21 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Dekker | - |
| dc.title | Improved bootstrap confidence intervals for the process capability index C-pk | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1080/03610918.2018.1520877 | - |
| dc.identifier.scopusid | 2-s2.0-85059008568 | - |
| dc.identifier.wosid | 000583996000005 | - |
| dc.identifier.bibliographicCitation | Communications in Statistics Part B: Simulation and Computation, v.49, no.10, pp 2583 - 2603 | - |
| dc.citation.title | Communications in Statistics Part B: Simulation and Computation | - |
| dc.citation.volume | 49 | - |
| dc.citation.number | 10 | - |
| dc.citation.startPage | 2583 | - |
| dc.citation.endPage | 2603 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
| dc.subject.keywordPlus | VARIANCE | - |
| dc.subject.keywordAuthor | Bootstrap | - |
| dc.subject.keywordAuthor | Confidence interval | - |
| dc.subject.keywordAuthor | Process capability index | - |
| dc.subject.keywordAuthor | Statistical power | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
