Cited 9 time in
Biological Interfacial Materials for Organic Light-Emitting Diodes
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Islam, Amjad | - |
| dc.contributor.author | Shah, Syed Hamad Ullah | - |
| dc.contributor.author | Haider, Zeeshan | - |
| dc.contributor.author | Imran, Muhammad | - |
| dc.contributor.author | Amin, Al | - |
| dc.contributor.author | Haider, Syed Kamran | - |
| dc.contributor.author | Li, Ming-De | - |
| dc.date.accessioned | 2023-07-19T04:40:43Z | - |
| dc.date.available | 2023-07-19T04:40:43Z | - |
| dc.date.issued | 2023-06 | - |
| dc.identifier.issn | 2072-666X | - |
| dc.identifier.issn | 2072-666X | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/59737 | - |
| dc.description.abstract | Organic optoelectronic devices have received appreciable attention due to their low cost, mechanical flexibility, band-gap engineering, lightness, and solution processability over a broad area. Specifically, realizing sustainability in organic optoelectronics, especially in solar cells and light-emitting devices, is a crucial milestone in the evolution of green electronics. Recently, the utilization of biological materials has appeared as an efficient means to alter the interfacial properties, and hence improve the performance, lifetime and stability of organic light-emitting diodes (OLEDs). Biological materials can be known as essential renewable bio-resources obtained from plants, animals and microorganisms. The application of biological interfacial materials (BIMs) in OLEDs is still in its early phase compared to the conventional synthetic interfacial materials; however, their fascinating features (such as their eco-friendly nature, biodegradability, easy modification, sustainability, biocompatibility, versatile structures, proton conductivity and rich functional groups) are compelling researchers around the world to construct innovative devices with enhanced efficiency. In this regard, we provide an extensive review of BIMs and their significance in the evolution of next-generation OLED devices. We highlight the electrical and physical properties of different BIMs, and address how such characteristics have been recently exploited to make efficient OLED devices. Biological materials such as ampicillin, deoxyribonucleic acid (DNA), nucleobases (NBs) and lignin derivatives have demonstrated significant potential as hole/electron transport layers as well as hole/electron blocking layers for OLED devices. Biological materials capable of generating a strong interfacial dipole can be considered as a promising prospect for alternative interlayer materials for OLED applications. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
| dc.title | Biological Interfacial Materials for Organic Light-Emitting Diodes | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/mi14061171 | - |
| dc.identifier.scopusid | 2-s2.0-85163974927 | - |
| dc.identifier.wosid | 001014739200001 | - |
| dc.identifier.bibliographicCitation | Micromachines, v.14, no.6 | - |
| dc.citation.title | Micromachines | - |
| dc.citation.volume | 14 | - |
| dc.citation.number | 6 | - |
| dc.type.docType | Review | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Instruments & Instrumentation | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordPlus | HIGHLY EFFICIENT | - |
| dc.subject.keywordPlus | SOLAR-CELLS | - |
| dc.subject.keywordPlus | MEH-PPV | - |
| dc.subject.keywordPlus | DNA | - |
| dc.subject.keywordPlus | BIOMASS | - |
| dc.subject.keywordPlus | DEGRADATION | - |
| dc.subject.keywordPlus | ELECTRONICS | - |
| dc.subject.keywordPlus | LIGNIN | - |
| dc.subject.keywordPlus | GREEN | - |
| dc.subject.keywordPlus | BIOMATERIALS | - |
| dc.subject.keywordAuthor | biological | - |
| dc.subject.keywordAuthor | interfacial materials | - |
| dc.subject.keywordAuthor | organic light-emitting devices | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
