Detailed Information

Cited 14 time in webofscience Cited 10 time in scopus
Metadata Downloads

Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorNaresh, Nibagani-
dc.contributor.authorEom, Suyoon-
dc.contributor.authorLee, Sang Jun-
dc.contributor.authorJeong, Su Hwan-
dc.contributor.authorJung, Ji-Won-
dc.contributor.authorJung, Young Hwa-
dc.contributor.authorKim, Joo-Hyung-
dc.date.accessioned2023-06-29T00:40:40Z-
dc.date.available2023-06-29T00:40:40Z-
dc.date.issued2023-01-
dc.identifier.issn2575-0348-
dc.identifier.issn2575-0356-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/59713-
dc.description.abstractThe layered δ-MnO2 (dMO) is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance (~0.7 nm), high capacity, and low cost; however, such cathodes suffer from structural degradation during the long-term cycling process, leading to capacity fading. In this study, a Co-doped dMO composite with reduced graphene oxide (GC-dMO) is developed using a simple cost-effective hydrothermal method. The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites. It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge, which enhances the intercalation of Zn2+ ions, H2O molecules in the layered structure. The GC-dMO cathode exhibits an excellent capacity of 302 mAh g−1 at a current density of 100 mA g−1 after 100 cycles as compared with the dMO cathode (159 mAh g−1). The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness, and maintains structural stability, which facilitates the easy reverse intercalation and de-intercalation of Zn2+ ions and H2O molecules. Therefore, GC-dMO is a promising cathode material for large-scale aqueous ZIBs. © 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.-
dc.language영어-
dc.language.isoENG-
dc.publisherJohn Wiley and Sons Inc-
dc.titleDisordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/eem2.12640-
dc.identifier.scopusid2-s2.0-85162191297-
dc.identifier.wosid001015153700001-
dc.identifier.bibliographicCitationEnergy and Environmental Materials, v.7, no.3-
dc.citation.titleEnergy and Environmental Materials-
dc.citation.volume7-
dc.citation.number3-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusMNO2-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusV2O5-
dc.subject.keywordAuthoraqueous zinc-ion batteries-
dc.subject.keywordAuthorbirnessite-
dc.subject.keywordAuthorbuserite-
dc.subject.keywordAuthordisordered structure-
dc.subject.keywordAuthorphase transformation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles
공학계열 > 나노신소재공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Joo Hyung photo

Kim, Joo Hyung
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE