Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

A complex tissue-specific interplay between the Arabidopsis transcription factors AtMYB68, AtHB23, and AtPHL1 modulates primary and lateral root development and adaptation to salinity

Authors
Spies, Fiorella PaolaPerotti, María FlorenciaCho, YuhanJo, Chang IgHong, Jong ChanChan, Raquel Lía
Issue Date
Aug-2023
Publisher
Blackwell Publishing Inc.
Keywords
AtHB23; AtMYB68; AtPHL1; protein–protein interaction; root development; salinity
Citation
Plant Journal, v.115, no.4, pp 952 - 966
Pages
15
Indexed
SCIE
SCOPUS
Journal Title
Plant Journal
Volume
115
Number
4
Start Page
952
End Page
966
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/59555
DOI
10.1111/tpj.16273
ISSN
0960-7412
1365-313X
Abstract
Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant survival under salinity conditions. We wondered whether this TF has partners to perform this essential function. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays were complemented with expression analyses and phenotypic characterization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and the salinity response. The encoding genes are coexpressed in specific root tissues and at specific developmental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite phenotype to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation. Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant's survival ability. Such interplay supports the complex interaction between these TF in primary and lateral roots. The root adaptation capability is associated with the amyloplast state. We identified new molecular players that through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions. © 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE