Detailed Information

Cited 21 time in webofscience Cited 22 time in scopus
Metadata Downloads

Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model

Full metadata record
DC Field Value Language
dc.contributor.authorKamruzzaman, Mohammad-
dc.contributor.authorHwang, Syewoon-
dc.contributor.authorChoi, Soon-Kun-
dc.contributor.authorCho, Jaepil-
dc.contributor.authorSong, Inhong-
dc.contributor.authorJeong, Hanseok-
dc.contributor.authorSong, Jung-Hun-
dc.contributor.authorJang, Teail-
dc.contributor.authorYoo, Seung-Hwan-
dc.date.accessioned2022-12-26T12:16:26Z-
dc.date.available2022-12-26T12:16:26Z-
dc.date.issued2020-11-
dc.identifier.issn0378-3774-
dc.identifier.issn1873-2283-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/5942-
dc.description.abstractThis study is to evaluate the BMPs in the reduction of surface discharge and mineral nitrogen yield from paddy cultivation for three future time slices (e.g., the 2010s, 2040s, and 2070s) using APEX-Paddy (Agricultural Policy/Environmental eXtender-Paddy) model. The model was calibrated and validated for surface discharge and mineral nitrogen yield using 3-year monitoring data (20132015) from the conventional paddy management field (CMP-1). For surface discharge and mineral nitrogen yield estimates, the future projections of 29 GCMs (General Circulation Model) were bias-corrected and applied to the calibrated APEX-Paddy model. We investigated five specific management strategies related to paddy drainage outlet regulation and new fertilization methods, as the BMPs minimize the mineral nitrogen yield and surface discharges due to climate change. The modeling results indicated that the effects of BMPs would vary by future climate scenarios (i.e., RCP4.5, RCP8.5) and periods (i.e., the 2010s, 2040s, 2070s). It was generally expected that the surface discharge and mineral nitrogen yields would increase in the future. The combination of raising drainage outlets and soil test-based fertilization (DOR-STF) showed a substantial reduction in surface discharge in both scenarios (RCP4.5 and 8.5); the highest reduction rate was observed in the 2010s and was estimated at 21.9 % under RCP4.5. Soil test-based fertilization (STF) showed a substantial reduction in mineral nitrogen yield by 31.0 and 28.3 % during the 2010s under RCP8.5 and RCP4.5, respectively followed by DOR-STF, as compared to conventional management practice (CMP-1). However, the combination of drainage outlet raising, and fertilizer application before outlet weir installation (DOR-FABWI) management resulted in increased mineral nitrogen yield of up to 31.0 % under RCP4.5 and 36.7 % under RCP8.5. The study findings indicate that climate change will increase exports of mineral nitrogen from paddy fields. Nevertheless, appropriate BMPs may play a vital role in reducing the mineral nitrogen yields for the production of paddy rice in future climates, and these effects may vary according to future climate conditions.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titlePrediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.agwat.2020.106345-
dc.identifier.scopusid2-s2.0-85087428520-
dc.identifier.wosid000569704000010-
dc.identifier.bibliographicCitationAgricultural Water Management, v.241-
dc.citation.titleAgricultural Water Management-
dc.citation.volume241-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaWater Resources-
dc.relation.journalWebOfScienceCategoryAgronomy-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.subject.keywordPlusMULTIMODEL ENSEMBLE-
dc.subject.keywordPlusHYDROLOGICAL MODEL-
dc.subject.keywordPlusCHANGE IMPACTS-
dc.subject.keywordPlusRIVER FLOWS-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusSIMULATE-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusRUNOFF-
dc.subject.keywordPlusCROPS-
dc.subject.keywordPlusLOADS-
dc.subject.keywordAuthorAPEX model-
dc.subject.keywordAuthorBMPs-
dc.subject.keywordAuthorClimate change-
dc.subject.keywordAuthorMineral nitrogen yield-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > Department of Agricultural Engineering, GNU > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Sye Woon photo

Hwang, Sye Woon
농업생명과학대학 (지역시스템공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE