Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Chloroquine inhibits vasodilation induced by ATP-sensitive potassium channels in isolated rat aortaopen access

Authors
Park, Kyeong-EonLee, Soo HeeBae, Sung IlHwang, YeranOk, Seong-HoKang, DawonAhn, Seung HyunSim, GyujinPark, Jin KyeongSohn, Ju-Tae
Issue Date
May-2023
Publisher
Slovenska Akademia Vied
Keywords
KATP channel; Levcromakalim; Vasodilation; Chloroquine; Reactive oxygen; species
Citation
General Physiology and Biophysics, v.42, no.3, pp 297 - 306
Pages
10
Indexed
SCIE
SCOPUS
Journal Title
General Physiology and Biophysics
Volume
42
Number
3
Start Page
297
End Page
306
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/59414
DOI
10.4149/gpb_2023008
ISSN
0231-5882
1338-4325
Abstract
This study examined the effect of chloroquine on vasodilation induced by levcromakalim in isolated endothelium-denuded rat aortas and clarified the underlying mechanisms. We examined the effects of chloroquine, hydroxychloroquine, lipid emulsion, reactive oxygen species (ROS) scavenger N-acetyl-ʟ-cysteine (NAC), and KATP channel inhibitor glibenclamide on levcromakaliminduced vasodilation. The effects of chloroquine, hydroxychloroquine, NAC, and levcromakalim on membrane hyperpolarization and ROS production were examined in aortic vascular smooth muscle cells (VSMCs). Chloroquine inhibited levcromakalim-induced vasodilation more than hydroxychloroquine. NAC attenuated chloroquine-mediated inhibition of levcromakalim-induced vasodilation, while lipid emulsion had no effect. Glibenclamide eliminated levcromakalim-induced vasodilation in aortas pretreated with chloroquine. Chloroquine and hydroxychloroquine inhibited levcromakalim-induced membrane hyperpolarization in VSMCs. Chloroquine and hydroxychloroquine both produced ROS, but chloroquine produced more. NAC inhibited chloroquine-induced ROS production in VSMCs. Collectively, these results suggest that, partially through ROS production, chloroquine inhibits levcromakalim-induced vasodilation. In addition, chloroquine-induced KATP channel-induced vasodilation impairment was not restored by lipid emulsion.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의학계열 > 의학과 > Journal Articles
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Da Won photo

Kang, Da Won
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE