Cited 0 time in
의사결정나무를 활용한 신경망 모형의 입력특성 선택: 주택가격 추정 사례
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 윤한성 | - |
| dc.date.accessioned | 2023-04-24T07:42:06Z | - |
| dc.date.available | 2023-04-24T07:42:06Z | - |
| dc.date.issued | 2023-03 | - |
| dc.identifier.issn | 1738-6667 | - |
| dc.identifier.issn | 2713-9018 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/59172 | - |
| dc.description.abstract | Data-based analysis methods have become used more for estimating or predicting housing prices, and neural network models and decision trees in the field of big data are also widely used more and more. Neural network models are often evaluated to be superior to existing statistical models in terms of estimation or prediction accuracy. However, there is ambiguity in determining the input feature of the input layer of the neural network model, that is, the type and number of input features, and decision trees are sometimes used to overcome these disadvantages. In this paper, we evaluate the existing methods of using decision trees and propose the method of using decision trees to prioritize input feature selection in neural network models. This can be a complementary or combined analysis method of the neural network model and decision tree, and the validity was confirmed by applying the proposed method to house price estimation. Through several comparisons, it has been summarized that the selection of appropriate input characteristics according to priority can increase the estimation power of the model. | - |
| dc.format.extent | 10 | - |
| dc.language | 한국어 | - |
| dc.language.iso | KOR | - |
| dc.publisher | (사)디지털산업정보학회 | - |
| dc.title | 의사결정나무를 활용한 신경망 모형의 입력특성 선택: 주택가격 추정 사례 | - |
| dc.title.alternative | Decision Tree-Based Feature-Selective Neural Network Model: Case of House Price Estimation | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.bibliographicCitation | (사)디지털산업정보학회 논문지, v.19, no.1, pp 109 - 118 | - |
| dc.citation.title | (사)디지털산업정보학회 논문지 | - |
| dc.citation.volume | 19 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 109 | - |
| dc.citation.endPage | 118 | - |
| dc.identifier.kciid | ART002941961 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.subject.keywordAuthor | Neural Network Model | - |
| dc.subject.keywordAuthor | Decision Tree | - |
| dc.subject.keywordAuthor | Input Feature | - |
| dc.subject.keywordAuthor | House Price | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
