Detailed Information

Cited 0 time in webofscience Cited 12 time in scopus
Metadata Downloads

Research and Technology Trend Analysis by Big Data-Based Smart Livestock Technology: a Review

Full metadata record
DC Field Value Language
dc.contributor.authorKim, M.-J.-
dc.contributor.authorMo, C.-
dc.contributor.authorKim, H.T.-
dc.contributor.authorCho, B.-K.-
dc.contributor.authorHong, S.-J.-
dc.contributor.authorLee, D.H.-
dc.contributor.authorShin, C.-S.-
dc.contributor.authorJang, K.J.-
dc.contributor.authorKim, Y.-H.-
dc.contributor.authorBaek, I.-
dc.date.accessioned2022-12-26T12:01:21Z-
dc.date.available2022-12-26T12:01:21Z-
dc.date.issued2021-12-
dc.identifier.issn1738-1266-
dc.identifier.issn2234-1862-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/5666-
dc.description.abstractPurpose: This study introduces the global research and technological trends related to various kinds of Information and Communications Technologies (ICTs) used and applied in the livestock industry by improving productivity via breeding, disease and optimal environment control, and smart business management. Method: Prior research data was collected using “ICT,” “IoT,” “information technology (IT),” “ubiquitous technology,” “smart livestock,” and “big data” as main keywords. Results: Most livestock farms in Korea adopt smart livestock technology that are mostly used in the 1st or 1.5th generations, while continuous developments are being carried out for technologies of the 2nd and 3rd generations. In the livestock house, camera vision, radio-frequency identification (RFID), beacon sensors, and environmental sensors are used in livestock farms and houses to collect information compiled into a database to introduce an automated system for livestock management. Conclusion: The data collected from each individual and farm can enable precise breeding and ultimately improve the productivity and efficiency of smart livestock systems. It is necessary to prepare a systematic system at the national level for data collection, ownership, and sharing to improve the productivity and efficiency of the smart livestock system. ? 2021, The Korean Society for Agricultural Machinery.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Science and Business Media Deutschland GmbH-
dc.titleResearch and Technology Trend Analysis by Big Data-Based Smart Livestock Technology: a Review-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s42853-021-00115-9-
dc.identifier.scopusid2-s2.0-85118611439-
dc.identifier.bibliographicCitationJournal of Biosystems Engineering, v.46, no.4, pp 386 - 398-
dc.citation.titleJournal of Biosystems Engineering-
dc.citation.volume46-
dc.citation.number4-
dc.citation.startPage386-
dc.citation.endPage398-
dc.type.docTypeReview-
dc.identifier.kciidART002805915-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorBreeding management-
dc.subject.keywordAuthorEnvironmental management-
dc.subject.keywordAuthorInternet of Things (IoT)-
dc.subject.keywordAuthorSmart livestock-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyeon Tae photo

Kim, Hyeon Tae
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE