Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrasonic device developed for non-invasive moxibustion therapy

Full metadata record
DC Field Value Language
dc.contributor.author김건우-
dc.contributor.authorYoung-In Hwang-
dc.contributor.authorYeonhee Ryu-
dc.contributor.authorHak-Joon Kim-
dc.contributor.authorYoung-Min Bae-
dc.contributor.author김기복-
dc.date.accessioned2022-12-26T11:00:29Z-
dc.date.available2022-12-26T11:00:29Z-
dc.date.issued2021-
dc.identifier.issn2213-4220-
dc.identifier.issn2213-4239-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/4403-
dc.description.abstractBackground Recently, some adverse effects of moxibustion has been reported such as burns, smoke, allergies, and so on. To overcome the adverse effects of traditional moxibustion, an ultrasonic moxibustion device (UMD) was designed, simulated, fabricated, and tested. The objective of this study is to provide detailed information about the main design parameters, simulation outcome, and performance-test results. Methods The main components of the UMD are a 1-MHz ultrasonic transducer (UT) with concave lens, and its applicator. The acoustic pressure and temperature distribution of the UT was simulated and described graphically using COMSOL software, which is based on the finite element method (FEM). Experimental verification of the temperature distribution was performed on the skin of pork. The temperature-change profiles of pork in relation to increase of therapy time were obtained at an unfocused point (2 mm) and at a focal distance of 13 mm. For the performance test, moxibustion therapy was conducted on the abdominal skin of mice for 120 min using the new UMD and its histological images were acquired to analyze the skin-tissue damage. Results The FEM simulation of temperature distribution and acoustic pressure agreed with the experimental outcome. Histological images showed that there was no skin-tissue damage to the mouse abdomens after therapy. The results clearly show that the newly developed UMD can overcome the disadvantages of traditional moxibustion therapy and achieve the proposed design parameters. Conclusion The FEM simulation and performance tests provided valuable information about developing future UMDs. In addition, its performance can be compared with traditional moxibustion therapy for future study.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisher한국한의학연구원-
dc.titleUltrasonic device developed for non-invasive moxibustion therapy-
dc.title.alternativeUltrasonic device developed for non-invasive moxibustion therapy-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1016/j.imr.2021.100729-
dc.identifier.bibliographicCitationIntegrative Medicine Research, v.10, no.4, pp 1 - 5-
dc.citation.titleIntegrative Medicine Research-
dc.citation.volume10-
dc.citation.number4-
dc.citation.startPage1-
dc.citation.endPage5-
dc.identifier.kciidART002785988-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorMoxibustion-
dc.subject.keywordAuthorAcupoint-
dc.subject.keywordAuthorUltrasonic transducer-
dc.subject.keywordAuthorFEM simulation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Geonwoo photo

Kim, Geonwoo
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE