Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

해상에서 소형 객체 인식을 위한 데이터 전처리 방안 연구

Full metadata record
DC Field Value Language
dc.contributor.author김기관-
dc.contributor.author노천명-
dc.contributor.author이수봉-
dc.contributor.author이순섭-
dc.contributor.author이재철-
dc.date.accessioned2022-12-26T11:00:27Z-
dc.date.available2022-12-26T11:00:27Z-
dc.date.issued2021-
dc.identifier.issn2508-4003-
dc.identifier.issn2508-402X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/4391-
dc.description.abstractImplementing good performance deep learning requires a large amount of high-quality data. However, in areas where the amount of data is limited, data collection takes a lot of time and cost. This study attempts to detect small object-sized submarine masts based on the environmental characteristics of the sea, which limit data collection and reduce the amount and quality of data due to the characteristics of submarine data used in the study. This study aims to improve recognition performance through preprocessing techniques with a small amount of data, and it can be seen that recognition performance has improved based on mAP.-
dc.format.extent10-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국CDE학회-
dc.title해상에서 소형 객체 인식을 위한 데이터 전처리 방안 연구-
dc.title.alternativeA Study on the Data Pre-processing Method for Recognizing Small Objects in the Sea-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitation한국CDE학회 논문집, v.26, no.4, pp 366 - 375-
dc.citation.title한국CDE학회 논문집-
dc.citation.volume26-
dc.citation.number4-
dc.citation.startPage366-
dc.citation.endPage375-
dc.identifier.kciidART002781573-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorData pre-processing-
dc.subject.keywordAuthorObject detection-
dc.subject.keywordAuthorOcean-
dc.subject.keywordAuthorSubmarine-
dc.subject.keywordAuthorSubmarine mast-
dc.subject.keywordAuthorSmall data-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 조선해양공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae Chul photo

Lee, Jae Chul
해양과학대학 (조선해양공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE