아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Young-Geun | - |
dc.contributor.author | An, Geon-Hyoung | - |
dc.date.accessioned | 2022-12-26T10:45:37Z | - |
dc.date.available | 2022-12-26T10:45:37Z | - |
dc.date.issued | 2021-02 | - |
dc.identifier.issn | 1225-0562 | - |
dc.identifier.issn | 2287-7258 | - |
dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/4128 | - |
dc.description.abstract | Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g(-1) at current density of 0.1 A g(-1), high-rate performance with 109.4 mAh g(-1) at a current density of 2.0 A g(-1), and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g(-1)). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future. | - |
dc.format.extent | 7 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 한국재료학회 | - |
dc.title | 아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조 | - |
dc.title.alternative | Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.3740/MRSK.2021.31.1.68 | - |
dc.identifier.scopusid | 2-s2.0-85103316602 | - |
dc.identifier.wosid | 000632011900002 | - |
dc.identifier.bibliographicCitation | Korean Journal of Materials Research, v.31, no.2, pp 68 - 74 | - |
dc.citation.title | Korean Journal of Materials Research | - |
dc.citation.volume | 31 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 68 | - |
dc.citation.endPage | 74 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART002691386 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | esci | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | CARBON | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | NANOCOMPOSITES | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordAuthor | zinc-ion batteries | - |
dc.subject.keywordAuthor | cathode material | - |
dc.subject.keywordAuthor | manganese oxide | - |
dc.subject.keywordAuthor | graphite sheet | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0533
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.