Detailed Information

Cited 15 time in webofscience Cited 17 time in scopus
Metadata Downloads

Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference

Full metadata record
DC Field Value Language
dc.contributor.authorDoh, Jaehyeok-
dc.contributor.authorPark, Sang-In-
dc.contributor.authorYang, Qing-
dc.contributor.authorRaghavan, Nagarajan-
dc.date.accessioned2022-12-26T10:45:36Z-
dc.date.available2022-12-26T10:45:36Z-
dc.date.issued2021-02-
dc.identifier.issn0008-6223-
dc.identifier.issn1873-3891-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/4118-
dc.description.abstractThis research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (phi(c)) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (sigma(o)) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling phi(c), sigma(o), and t. (C) 2020 Elsevier Ltd. All rights reserved.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherPergamon Press Ltd.-
dc.titleUncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.carbon.2020.09.092-
dc.identifier.scopusid2-s2.0-85092637709-
dc.identifier.wosid000600422000015-
dc.identifier.bibliographicCitationCarbon, v.172, pp 308 - 323-
dc.citation.titleCarbon-
dc.citation.volume172-
dc.citation.startPage308-
dc.citation.endPage323-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusMCMC-
dc.subject.keywordAuthorPolymer nanocomposites (PNC)-
dc.subject.keywordAuthorCarbon nanotube (CNT) waviness-
dc.subject.keywordAuthorElectrical percolation behavior-
dc.subject.keywordAuthorPearson correlation coefficient-
dc.subject.keywordAuthorUncertainty quantification (UQ)-
dc.subject.keywordAuthorBayesian inference-
Files in This Item
There are no files associated with this item.
Appears in
Collections
융합기술공과대학 > 기계소재융합공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Doh, Jae Hyeok photo

Doh, Jae Hyeok
우주항공대학 (항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE