Detailed Information

Cited 34 time in webofscience Cited 38 time in scopus
Metadata Downloads

Effects of Non-Driving-Related Task Attributes on Takeover Quality in Automated Vehicles

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Seul Chan-
dc.contributor.authorYoon, Sol Hee-
dc.contributor.authorJi, Yong Gu-
dc.date.accessioned2022-12-26T10:45:32Z-
dc.date.available2022-12-26T10:45:32Z-
dc.date.issued2021-02-07-
dc.identifier.issn1044-7318-
dc.identifier.issn1532-7590-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/4101-
dc.description.abstractThis study aimed to investigate the effects of non-driving-related tasks (NDRTs) on takeover quality in the context of automated driving. Specifically, we examined the effects of three categories of NDRT attributes (i.e., physical, cognitive, and visual) on longitudinal and lateral driving measures when the drivers resumed control. We designed a driving simulator study where the participants experienced automated driving journeys and takeover situations. When the automated mode was activated, drivers engaged in one of the nine NDRTs. The results showed that the cognitive load of NDRTs had a significant negative correlation with both longitudinal and lateral control measures. However, the effects of two attributes in the physical category and one attribute in the visual category on driving performance did not show statistical significance. Overall, the findings indicated that the influence of cognitive attributes on takeover quality is more salient than that of the physical and visual attributes, which provides insights into the understanding of takeover situations to improve driving safety.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherLawrence Erlbaum Associates Inc.-
dc.titleEffects of Non-Driving-Related Task Attributes on Takeover Quality in Automated Vehicles-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/10447318.2020.1815361-
dc.identifier.scopusid2-s2.0-85090311537-
dc.identifier.wosid000566997900001-
dc.identifier.bibliographicCitationInternational Journal of Human-Computer Interaction, v.37, no.3, pp 211 - 219-
dc.citation.titleInternational Journal of Human-Computer Interaction-
dc.citation.volume37-
dc.citation.number3-
dc.citation.startPage211-
dc.citation.endPage219-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.relation.journalWebOfScienceCategoryErgonomics-
dc.subject.keywordPlusCOGNITIVE LOAD-
dc.subject.keywordPlusINFORMATION-SYSTEMS-
dc.subject.keywordPlusBEHAVIORAL-CHANGES-
dc.subject.keywordPlusDRIVER TAKEOVER-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTIME-
dc.subject.keywordPlusWORKLOAD-
dc.subject.keywordPlusDISTRACTION-
dc.subject.keywordPlusMODALITIES-
dc.subject.keywordPlusREQUESTS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Industrial and Systems Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE