Detailed Information

Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads

Quantitative estimation of corrosion rate in 3C steels under seawater environment

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Sedong-
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorBang, Won Seok-
dc.contributor.authorPanigrahi, B. B.-
dc.contributor.authorLim, Su-Gun-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T10:31:20Z-
dc.date.available2022-12-26T10:31:20Z-
dc.date.issued2021-03-
dc.identifier.issn2238-7854-
dc.identifier.issn2214-0697-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3990-
dc.description.abstractAn artificial neural network method is proposed to correlate the relationship between the corrosion rate of 3C steels with seawater environment factors. The predictions with the unseen test data are in good agreement with experimental values. Further, the developed model used to simulate the combined effect of environmental factors (temperature, dissolved oxygen, salinity, pH values, and oxidation-reduction potential) on the corrosion rate. 3D mappings remarkably reveal the complex interrelationship between the input environmental parameters on the output corrosion rate. The quantitative estimation of corrosion by virtual addition/subtraction of environmental factors individually to a hypothetical system helps to understand the impact of each parameter. (C) 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Editora Ltda-
dc.titleQuantitative estimation of corrosion rate in 3C steels under seawater environment-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jmrt.2021.01.039-
dc.identifier.scopusid2-s2.0-85103250912-
dc.identifier.wosid000640316800002-
dc.identifier.bibliographicCitationJournal of Materials Research and Technology, v.11, pp 681 - 686-
dc.citation.titleJournal of Materials Research and Technology-
dc.citation.volume11-
dc.citation.startPage681-
dc.citation.endPage686-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordAuthorSeawater corrosion rate-
dc.subject.keywordAuthor3C steels-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorVirtual seawater environment-
dc.subject.keywordAuthorSensitivity analysis-
dc.subject.keywordAuthorQuantitative estimation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > 나노신소재공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE