Cited 12 time in
Quantitative estimation of corrosion rate in 3C steels under seawater environment
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Sedong | - |
| dc.contributor.author | Narayana, P. L. | - |
| dc.contributor.author | Bang, Won Seok | - |
| dc.contributor.author | Panigrahi, B. B. | - |
| dc.contributor.author | Lim, Su-Gun | - |
| dc.contributor.author | Reddy, N. S. | - |
| dc.date.accessioned | 2022-12-26T10:31:20Z | - |
| dc.date.available | 2022-12-26T10:31:20Z | - |
| dc.date.issued | 2021-03 | - |
| dc.identifier.issn | 2238-7854 | - |
| dc.identifier.issn | 2214-0697 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3990 | - |
| dc.description.abstract | An artificial neural network method is proposed to correlate the relationship between the corrosion rate of 3C steels with seawater environment factors. The predictions with the unseen test data are in good agreement with experimental values. Further, the developed model used to simulate the combined effect of environmental factors (temperature, dissolved oxygen, salinity, pH values, and oxidation-reduction potential) on the corrosion rate. 3D mappings remarkably reveal the complex interrelationship between the input environmental parameters on the output corrosion rate. The quantitative estimation of corrosion by virtual addition/subtraction of environmental factors individually to a hypothetical system helps to understand the impact of each parameter. (C) 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | - |
| dc.format.extent | 6 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier Editora Ltda | - |
| dc.title | Quantitative estimation of corrosion rate in 3C steels under seawater environment | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.jmrt.2021.01.039 | - |
| dc.identifier.scopusid | 2-s2.0-85103250912 | - |
| dc.identifier.wosid | 000640316800002 | - |
| dc.identifier.bibliographicCitation | Journal of Materials Research and Technology, v.11, pp 681 - 686 | - |
| dc.citation.title | Journal of Materials Research and Technology | - |
| dc.citation.volume | 11 | - |
| dc.citation.startPage | 681 | - |
| dc.citation.endPage | 686 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.subject.keywordPlus | TEMPERATURE | - |
| dc.subject.keywordPlus | PREDICTION | - |
| dc.subject.keywordAuthor | Seawater corrosion rate | - |
| dc.subject.keywordAuthor | 3C steels | - |
| dc.subject.keywordAuthor | Artificial neural networks | - |
| dc.subject.keywordAuthor | Virtual seawater environment | - |
| dc.subject.keywordAuthor | Sensitivity analysis | - |
| dc.subject.keywordAuthor | Quantitative estimation | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
