Detailed Information

Cited 20 time in webofscience Cited 24 time in scopus
Metadata Downloads

Deep Learning-Aided Distributed Transmit Power Control for Underlay Cognitive Radio Network

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Woongsup-
dc.contributor.authorLee, Kisong-
dc.date.accessioned2022-12-26T10:31:01Z-
dc.date.available2022-12-26T10:31:01Z-
dc.date.issued2021-04-
dc.identifier.issn0018-9545-
dc.identifier.issn1939-9359-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3893-
dc.description.abstractIn this paper, we investigate deep learning-aided distributed transmit power control in the context of an underlay cognitive radio network (CRN). In the proposed scheme, the fully distributed transmit power control strategy of secondary users (SUs) is learned by means of a distributed deep neural network (DNN) structure in an unsupervised manner, such that the average spectral efficiency (SE) of the SUs is maximized whilst allowing the interference on primary users (PUs) to be regulated properly. Unlike previous centralized DNN-based strategies that require complete channel state information (CSI) to optimally determine the transmit power of SU transceiver pairs (TPs), in our proposed scheme, each SU TP determines its own transmit power based solely on its local CSI. Our simulation results verify that the proposed scheme can achieve a near-optimal SE comparable with a centralized DNN-based scheme, with a reduced computation time and no signaling overhead.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleDeep Learning-Aided Distributed Transmit Power Control for Underlay Cognitive Radio Network-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TVT.2021.3068368-
dc.identifier.scopusid2-s2.0-85103295200-
dc.identifier.wosid000647411800090-
dc.identifier.bibliographicCitationIEEE Transactions on Vehicular Technology, v.70, no.4, pp 3990 - 3994-
dc.citation.titleIEEE Transactions on Vehicular Technology-
dc.citation.volume70-
dc.citation.number4-
dc.citation.startPage3990-
dc.citation.endPage3994-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalWebOfScienceCategoryTransportation Science & Technology-
dc.subject.keywordPlusRESOURCE-ALLOCATION-
dc.subject.keywordPlusJOINT OPTIMIZATION-
dc.subject.keywordAuthorPower control-
dc.subject.keywordAuthorInterference-
dc.subject.keywordAuthorCognitive radio-
dc.subject.keywordAuthorTransceivers-
dc.subject.keywordAuthorReceivers-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorTransmitters-
dc.subject.keywordAuthorDeep neural network-
dc.subject.keywordAuthortransmit power control-
dc.subject.keywordAuthorunderlay cognitive radio network-
dc.subject.keywordAuthordistributed operation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE