Cited 8 time in
Modeling the quantitative effect of alloying elements on the M-s temperature of high carbon steel by artificial neural networks
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Wang, Xiao-Song | - |
| dc.contributor.author | Narayana, P. L. | - |
| dc.contributor.author | Maurya, A. K. | - |
| dc.contributor.author | Kim, Hong-In | - |
| dc.contributor.author | Hur, Bo-Young | - |
| dc.contributor.author | Reddy, N. S. | - |
| dc.date.accessioned | 2022-12-26T10:16:22Z | - |
| dc.date.available | 2022-12-26T10:16:22Z | - |
| dc.date.issued | 2021-05 | - |
| dc.identifier.issn | 0167-577X | - |
| dc.identifier.issn | 1873-4979 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3709 | - |
| dc.description.abstract | Chemical composition affects the properties and the martensite start (M-s) temperature of steels. This study predicts the Ms temperature of high carbon steel via artificial neural networks. Meanwhile, it enables us to estimate the quantitative effect of alloying elements on the M-s temperature on a sizeable selectable scale, which is the first time to release such results exactly. Compared to the previous formulas, this one is simple, visual, with high accuracy. (C) 2021 Elsevier B.V. All rights reserved. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Modeling the quantitative effect of alloying elements on the M-s temperature of high carbon steel by artificial neural networks | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.matlet.2021.129573 | - |
| dc.identifier.scopusid | 2-s2.0-85101838020 | - |
| dc.identifier.wosid | 000634766700023 | - |
| dc.identifier.bibliographicCitation | Materials Letters, v.291 | - |
| dc.citation.title | Materials Letters | - |
| dc.citation.volume | 291 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordAuthor | High carbon steel | - |
| dc.subject.keywordAuthor | Alloying element | - |
| dc.subject.keywordAuthor | M-s temperature | - |
| dc.subject.keywordAuthor | Quantitative effect | - |
| dc.subject.keywordAuthor | ANN | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
