Detailed Information

Cited 12 time in webofscience Cited 14 time in scopus
Metadata Downloads

Prediction of batch sorption of barium and strontium from saline water

Full metadata record
DC Field Value Language
dc.contributor.authorReddy, B. S.-
dc.contributor.authorMaurya, A. K.-
dc.contributor.authorSathishkumar, V-
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorReddy, M. H.-
dc.contributor.authorBaazeem, Alaa-
dc.contributor.authorCho, Kwon-Koo-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T10:16:15Z-
dc.date.available2022-12-26T10:16:15Z-
dc.date.issued2021-06-
dc.identifier.issn0013-9351-
dc.identifier.issn1096-0953-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3676-
dc.description.abstractCelestite and barite formation results in contamination of barium and strontium ions hinder oilfield water purification. Conversion of bio-waste sorbent products deals with a viable, sustainable and clean remediation approach for removing contaminants. Biochar sorbent produced from rice straw was used to remove barium and strontium ions of saline water from petroleum industries. The removal efficiency depends on biochar amount, pH, contact time, temperature, and Ba/Sr concentration ratio. The interactions and effects of these parameters with removal efficiency are multifaceted and nonlinear. We used an artificial neural network (ANN) model to explore the correlation between process variables and sorption responses. The ANN model is more accurate than that of existing kinetic and isotherm equations in assessing barium and strontium removal with adj. R-2 values of 0.994 and 0.991, respectively. We developed a standalone user interface to estimate the barium and strontium removal as a function of sorption process parameters. Sensitivity analysis and quantitative estimation were carried out to study individual process variables' impact on removal efficiency.-
dc.language영어-
dc.language.isoENG-
dc.publisherAcademic Press-
dc.titlePrediction of batch sorption of barium and strontium from saline water-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.envres.2021.111107-
dc.identifier.scopusid2-s2.0-85103758042-
dc.identifier.wosid000663719100004-
dc.identifier.bibliographicCitationEnvironmental Research, v.197-
dc.citation.titleEnvironmental Research-
dc.citation.volume197-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.subject.keywordPlusAQUEOUS-SOLUTION-
dc.subject.keywordPlusMETHYLENE-BLUE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusOIL-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusEQUILIBRIUM-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusCADMIUM-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorPrediction-
dc.subject.keywordAuthorSorption-
dc.subject.keywordAuthorSensitivity analysis-
dc.subject.keywordAuthorSaline water-
dc.subject.keywordAuthorPetroleum industries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Kwon Koo photo

Cho, Kwon Koo
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE