Cited 8 time in
Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Seong Shin | - |
| dc.contributor.author | Paradhipta, Dimas Hand Vidya | - |
| dc.contributor.author | Lee, Hyuk Jun | - |
| dc.contributor.author | Joo, Young Ho | - |
| dc.contributor.author | Noh, Hyeon Tak | - |
| dc.contributor.author | Choi, Jeong Seok | - |
| dc.contributor.author | Ji, Keum Bae | - |
| dc.contributor.author | Kim, Sam Churl | - |
| dc.date.accessioned | 2022-12-26T10:16:03Z | - |
| dc.date.available | 2022-12-26T10:16:03Z | - |
| dc.date.issued | 2021-06 | - |
| dc.identifier.issn | 2765-0189 | - |
| dc.identifier.issn | 2765-0235 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3616 | - |
| dc.description.abstract | Objective: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1x10(5) colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p<0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility. | - |
| dc.format.extent | 9 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | ASIAN-AUSTRALASIAN ASSOC ANIMAL PRODUCTION SOC | - |
| dc.title | Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.5713/ajas.20.0545 | - |
| dc.identifier.scopusid | 2-s2.0-85105509401 | - |
| dc.identifier.wosid | 000645565400011 | - |
| dc.identifier.bibliographicCitation | ANIMAL BIOSCIENCE, v.34, no.6, pp 1029 - 1037 | - |
| dc.citation.title | ANIMAL BIOSCIENCE | - |
| dc.citation.volume | 34 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 1029 | - |
| dc.citation.endPage | 1037 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002717407 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Agriculture | - |
| dc.relation.journalWebOfScienceCategory | Agriculture, Dairy & Animal Science | - |
| dc.subject.keywordPlus | AEROBIC STABILITY | - |
| dc.subject.keywordPlus | GAS-PRODUCTION | - |
| dc.subject.keywordPlus | DAIRY-COWS | - |
| dc.subject.keywordPlus | FERMENTATION | - |
| dc.subject.keywordPlus | DIGESTIBILITY | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordPlus | RUMEN | - |
| dc.subject.keywordPlus | INOCULANT | - |
| dc.subject.keywordPlus | STORAGE | - |
| dc.subject.keywordAuthor | Haylage | - |
| dc.subject.keywordAuthor | Lactic Acid Bacteria | - |
| dc.subject.keywordAuthor | Rumen Fermentation | - |
| dc.subject.keywordAuthor | Silage | - |
| dc.subject.keywordAuthor | Whole Crop Rice | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
