An Optimal Image-Selection Algorithm for Large-Scale Stereoscopic Mapping of UAV Imagesopen access
- Authors
- 이석배; Pyung-chae Lim; Sooahm Rhee; Junghoon Seo; Jae-In Kim; Junhwa Chi; Taejung Kim
- Issue Date
- Jun-2021
- Publisher
- MDPI
- Citation
- REMOTE SENSING, v.13, no.11
- Indexed
- SCIE
SCOPUS
- Journal Title
- REMOTE SENSING
- Volume
- 13
- Number
- 11
- URI
- https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3602
- ISSN
- 2072-4292
- Abstract
- Recently, the mapping industry has been focusing on the possibility of large-scale mapping from unmanned aerial vehicles (UAVs) owing to advantages such as easy operation and cost reduction. In order to produce large-scale maps from UAV images, it is important to obtain precise orientation parameters as well as analyzing the sharpness of they themselves measured through image analysis. For this, various techniques have been developed and are included in most of the commercial UAV image processing software. For mapping, it is equally important to select images that can cover a region of interest (ROI) with the fewest possible images. Otherwise, to map the ROI, one may have to handle too many images, and commercial software does not provide information needed to select images, nor does it explicitly explain how to select images for mapping. For these reasons, stereo mapping of UAV images in particular is time consuming and costly. In order to solve these problems, this study proposes a method to select images intelligently. We can select a minimum number of image pairs to cover the ROI with the fewest possible images. We can also select optimal image pairs to cover the ROI with the most accurate stereo pairs. We group images by strips and generate the initial image pairs. We then apply an intelligent scheme to iteratively select optimal image pairs from the start to the end of an image strip. According to the results of the experiment, the number of images selected is greatly reduced by applying the proposed optimal image-composition algorithm. The selected image pairs produce a dense 3D point cloud over the ROI without any holes. For stereoscopic plotting, the selected image pairs were map the ROI successfully on a digital photogrammetric workstation (DPW) and a digital map covering the ROI is generated. The proposed method should contribute to time and cost reductions in UAV mapping.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 건설환경공과대학 > 건설시스템공학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.