Cited 5 time in
Purification of Colloidal Nanocrystals Along the Road to Highly Efficient Photovoltaic Devices
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Taewan | - |
| dc.contributor.author | Kelley, Mathew L. | - |
| dc.contributor.author | Kim, Duckjong | - |
| dc.contributor.author | Greytak, Andrew B. | - |
| dc.contributor.author | Jeong, Sohee | - |
| dc.date.accessioned | 2022-12-26T10:15:41Z | - |
| dc.date.available | 2022-12-26T10:15:41Z | - |
| dc.date.issued | 2021-07 | - |
| dc.identifier.issn | 2288-6206 | - |
| dc.identifier.issn | 2198-0810 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3513 | - |
| dc.description.abstract | Colloidal semiconducting nanocrystals, also called colloidal quantum dots (QDs) afford efficient photoconversion from visible to infrared wavelength owing to their size-dependent optoelectronic properties. To manufacture the highly performing devices utilizing colloidal NCs, however, unreacted impurities should be removed following synthesis. As the scale of NCs synthesis increases, especially in industry, the need is heightened for large-scale purification methods that can retain the desirable optoelectronic characteristics as of as-synthesized samples. Particularly, for the use of colloidal quantum dots (QD) films for photovoltaic active layers, control over the surface during the purification needs keen attention because residual impurities or trap states introduced by inappropriate treatments during the purification are detrimental to the carrier collection efficiency of the device. In this article, we review several approaches to the purification of QDs and their successful implications for formation of the efficient photovoltaic devices. We group the purification methods according to the key property by which the separation is achieved, and discuss the scalability of each method specifically focusing on the possibility of implementing a continuous process flow that is compatible with continuous synthesis processes developed for large scale production of QDs. Finally, we present recent efforts for the highly efficient photovoltaic QD devices and discuss the importance of purification in terms of device performance. | - |
| dc.format.extent | 13 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | KOREAN SOC PRECISION ENG | - |
| dc.title | Purification of Colloidal Nanocrystals Along the Road to Highly Efficient Photovoltaic Devices | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.1007/s40684-020-00231-5 | - |
| dc.identifier.scopusid | 2-s2.0-85085975718 | - |
| dc.identifier.wosid | 000537972500001 | - |
| dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, v.8, no.4, pp 1309 - 1321 | - |
| dc.citation.title | INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY | - |
| dc.citation.volume | 8 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 1309 | - |
| dc.citation.endPage | 1321 | - |
| dc.type.docType | Review | - |
| dc.identifier.kciid | ART002733794 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Mechanical | - |
| dc.subject.keywordPlus | PBS QUANTUM DOTS | - |
| dc.subject.keywordPlus | GEL-PERMEATION CHROMATOGRAPHY | - |
| dc.subject.keywordPlus | ELECTROPHORETIC DEPOSITION | - |
| dc.subject.keywordPlus | LIGAND-EXCHANGE | - |
| dc.subject.keywordPlus | SOLAR-CELLS | - |
| dc.subject.keywordPlus | SIZE SERIES | - |
| dc.subject.keywordPlus | CDSE | - |
| dc.subject.keywordPlus | SURFACE | - |
| dc.subject.keywordPlus | DIODES | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordAuthor | Colloidal nanocrystal | - |
| dc.subject.keywordAuthor | Quantum dot | - |
| dc.subject.keywordAuthor | Purification | - |
| dc.subject.keywordAuthor | Continuous process | - |
| dc.subject.keywordAuthor | Large-scale | - |
| dc.subject.keywordAuthor | Photovoltaic device | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
