Detailed Information

Cited 21 time in webofscience Cited 19 time in scopus
Metadata Downloads

Correlating the 3D melt electrospun polycaprolactone fiber diameter and process parameters using neural networks

Full metadata record
DC Field Value Language
dc.contributor.authorNarayana, Pasupuleti Lakshmi-
dc.contributor.authorWang, Xiao-Song-
dc.contributor.authorYeom, Jong-Taek-
dc.contributor.authorMaurya, Anoop Kumar-
dc.contributor.authorBang, Won-Seok-
dc.contributor.authorSrikanth, Ommi-
dc.contributor.authorReddy, Maddika Harinatha-
dc.contributor.authorHong, Jae-Keun-
dc.contributor.authorReddy, Nagireddy Gari Subba-
dc.date.accessioned2022-12-26T10:01:23Z-
dc.date.available2022-12-26T10:01:23Z-
dc.date.issued2021-08-
dc.identifier.issn0021-8995-
dc.identifier.issn1097-4628-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3381-
dc.description.abstractIn the present work, we developed an artificial neural networks (ANN) model to predict and analyze the polycaprolactone fiber diameter as a function of 3D melt electrospinning process parameters. A total of 35 datasets having various combinations of electrospinning writing process variables (collector speed, tip to nozzle distance, applied pressure, and voltage) and resultant fiber diameter were considered for model development. The designed stand-alone ANN software extracts relationships between the process variables and fiber diameter in a 3D melt electrospinning system. The developed model could predict the fiber diameter with reasonable accuracy for both train (28) and test (7) datasets. The relative index of importance revealed the significance of process variables on the fiber diameter. Virtual melt spinning system with the mean values of the process variables identifies the quantitative relationship between the fiber diameter and process variables.-
dc.language영어-
dc.language.isoENG-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleCorrelating the 3D melt electrospun polycaprolactone fiber diameter and process parameters using neural networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/app.50956-
dc.identifier.scopusid2-s2.0-85105102457-
dc.identifier.wosid000647042800001-
dc.identifier.bibliographicCitationJournal of Applied Polymer Science, v.138, no.37-
dc.citation.titleJournal of Applied Polymer Science-
dc.citation.volume138-
dc.citation.number37-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordAuthorfibers-
dc.subject.keywordAuthorstructure&#8208-
dc.subject.keywordAuthorproperty relationships-
dc.subject.keywordAuthortheory and modeling-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE