Detailed Information

Cited 6 time in webofscience Cited 7 time in scopus
Metadata Downloads

Modeling the teacher job satisfaction by artificial neural networks

Full metadata record
DC Field Value Language
dc.contributor.authorBang, Won Seok-
dc.contributor.authorWee, Kuk-hoan-
dc.contributor.authorPark, Ju-young-
dc.contributor.authorAnil Kumar, D.-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T10:01:13Z-
dc.date.available2022-12-26T10:01:13Z-
dc.date.issued2021-09-
dc.identifier.issn1432-7643-
dc.identifier.issn1433-7479-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3343-
dc.description.abstractThis article uses the artificial neural networks (ANNs) method to investigate the association between various dimensions of demographic and coaching leadership with the job satisfaction of teachers in Korean schools. ANN models demonstrate a superior capability to model the relationship with higher predictive accuracy than multiple regression analysis. A user-friendly standalone software is developed for prediction and estimating the relative importance of independent variables on job satisfaction. The graphical representation of results provides strong evidence of complexity, signifying that nonlinear representations understand the relationship between demographic and coaching dimensions with job satisfaction. Eventually, the proposed framework is a practical and accurate method to tackle influential factors and assessment problems in the organization.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleModeling the teacher job satisfaction by artificial neural networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1007/s00500-021-05958-0-
dc.identifier.scopusid2-s2.0-85108796853-
dc.identifier.wosid000667006800001-
dc.identifier.bibliographicCitationSoft Computing, v.25, no.17, pp 11803 - 11815-
dc.citation.titleSoft Computing-
dc.citation.volume25-
dc.citation.number17-
dc.citation.startPage11803-
dc.citation.endPage11815-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.subject.keywordPlusLEADERSHIP-STYLE-
dc.subject.keywordPlusSENSITIVITY-ANALYSIS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRUST-
dc.subject.keywordPlusCOMMITMENT-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusEFFICACY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorCoaching leadership-
dc.subject.keywordAuthorJob satisfaction-
dc.subject.keywordAuthorMultiple linear regression-
dc.subject.keywordAuthorPrediction-
dc.subject.keywordAuthorSensitivity analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE