Detailed Information

Cited 12 time in webofscience Cited 13 time in scopus
Metadata Downloads

Modeling and optimization of process parameters of biofilm reactor for wastewater treatment

Full metadata record
DC Field Value Language
dc.contributor.authorMaurya, A. K.-
dc.contributor.authorReddy, B. S.-
dc.contributor.authorTheerthagiri, J.-
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorPark, C. H.-
dc.contributor.authorHong, J. K.-
dc.contributor.authorYeom, J-T-
dc.contributor.authorCho, K. K.-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T10:00:51Z-
dc.date.available2022-12-26T10:00:51Z-
dc.date.issued2021-09-15-
dc.identifier.issn0048-9697-
dc.identifier.issn1879-1026-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3255-
dc.description.abstractThe efficiency of heavy metal in biofilm reactors depends on absorption process parameters, and those relationships are complicated. This study explores artificial neural networks (ANNs) feasibility to correlate the biofilm reactor process parameters with absorption efficiency. The heavy metal removal and turbidity were modeled as a function of five process parameters, namely pH, temperature(degrees C), feed flux(ml/min), substrate flow(ml/min), and hydraulic retention time(h). We developed a standalone ANN software for predicting and analyzing the absorption process in handling industrial wastewater. The model was tested extensively to confirm that the predictions are reasonable in the context of the absorption kinetics principles. The model predictions showed that the temperature and pH values are the most influential parameters affecting absorption efficiency and turbidity. (c) 2021 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleModeling and optimization of process parameters of biofilm reactor for wastewater treatment-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.scitotenv.2021.147624-
dc.identifier.scopusid2-s2.0-85105557594-
dc.identifier.wosid000662584800014-
dc.identifier.bibliographicCitationScience of the Total Environment, v.787-
dc.citation.titleScience of the Total Environment-
dc.citation.volume787-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusARTIFICIAL NEURAL-NETWORKS-
dc.subject.keywordPlusMETAL-IONS-
dc.subject.keywordPlusHYBRID BIOFILM-
dc.subject.keywordPlusHEAVY-METALS-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusBIOMASS-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusBIOSORPTION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorArtificial neural networks (ANN)-
dc.subject.keywordAuthorBiofilm reactor-
dc.subject.keywordAuthorWastewater treatment-
dc.subject.keywordAuthorHeavy metal removal-
dc.subject.keywordAuthor(IRI)-
dc.subject.keywordAuthorWeight distribution-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Kwon Koo photo

Cho, Kwon Koo
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE