Modeling and optimization of process parameters of biofilm reactor for wastewater treatment
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maurya, A. K. | - |
dc.contributor.author | Reddy, B. S. | - |
dc.contributor.author | Theerthagiri, J. | - |
dc.contributor.author | Narayana, P. L. | - |
dc.contributor.author | Park, C. H. | - |
dc.contributor.author | Hong, J. K. | - |
dc.contributor.author | Yeom, J-T | - |
dc.contributor.author | Cho, K. K. | - |
dc.contributor.author | Reddy, N. S. | - |
dc.date.accessioned | 2022-12-26T10:00:51Z | - |
dc.date.available | 2022-12-26T10:00:51Z | - |
dc.date.issued | 2021-09-15 | - |
dc.identifier.issn | 0048-9697 | - |
dc.identifier.issn | 1879-1026 | - |
dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3255 | - |
dc.description.abstract | The efficiency of heavy metal in biofilm reactors depends on absorption process parameters, and those relationships are complicated. This study explores artificial neural networks (ANNs) feasibility to correlate the biofilm reactor process parameters with absorption efficiency. The heavy metal removal and turbidity were modeled as a function of five process parameters, namely pH, temperature(degrees C), feed flux(ml/min), substrate flow(ml/min), and hydraulic retention time(h). We developed a standalone ANN software for predicting and analyzing the absorption process in handling industrial wastewater. The model was tested extensively to confirm that the predictions are reasonable in the context of the absorption kinetics principles. The model predictions showed that the temperature and pH values are the most influential parameters affecting absorption efficiency and turbidity. (c) 2021 Elsevier B.V. All rights reserved. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier BV | - |
dc.title | Modeling and optimization of process parameters of biofilm reactor for wastewater treatment | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.scitotenv.2021.147624 | - |
dc.identifier.scopusid | 2-s2.0-85105557594 | - |
dc.identifier.wosid | 000662584800014 | - |
dc.identifier.bibliographicCitation | Science of the Total Environment, v.787 | - |
dc.citation.title | Science of the Total Environment | - |
dc.citation.volume | 787 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.subject.keywordPlus | ARTIFICIAL NEURAL-NETWORKS | - |
dc.subject.keywordPlus | METAL-IONS | - |
dc.subject.keywordPlus | HYBRID BIOFILM | - |
dc.subject.keywordPlus | HEAVY-METALS | - |
dc.subject.keywordPlus | REMOVAL | - |
dc.subject.keywordPlus | BIOMASS | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | BIOSORPTION | - |
dc.subject.keywordPlus | PREDICTION | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordAuthor | Artificial neural networks (ANN) | - |
dc.subject.keywordAuthor | Biofilm reactor | - |
dc.subject.keywordAuthor | Wastewater treatment | - |
dc.subject.keywordAuthor | Heavy metal removal | - |
dc.subject.keywordAuthor | (IRI) | - |
dc.subject.keywordAuthor | Weight distribution | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0533
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.