Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Uncertainty of methane emissions coming from the physical volume of plant biomass inside the closed chamber was negligible during cropping period

Full metadata record
DC Field Value Language
dc.contributor.authorLim, Ji Yeon-
dc.contributor.authorCho, Song Rae-
dc.contributor.authorKim, Gil Won-
dc.contributor.authorKim, Pil Joo-
dc.contributor.authorJeong, Seung Tak-
dc.date.accessioned2022-12-26T10:00:50Z-
dc.date.available2022-12-26T10:00:50Z-
dc.date.issued2021-09-20-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3251-
dc.description.abstractIn rice paddy, the closed chamber method is broadly used to estimate methane (CH4) emission rate. Since rice plants can significantly affect CH4 production, oxidation and emission, rice plantation inside the chamber is standardized in IPCC guidelines. Methane emission rate is calculated using the increased concentration inside the headspace. Biomass growth might decrease the headspace volume, and thus CH4 emission rates might be overestimated. To evaluate the influence of chamber headspace decreased by rice plant development on CH4 emission rates, five Korean rice cultivars were cultivated in a typical rice paddy, and physical volume changes in rice biomass were assayed using water displacement method. The recommended acrylic closed chambers (H. 1.2 m x W. 0.6 m x L. 0.6 m) were installed, and eight rice plants were transplanted inside the chamber with the same space interval with the outside. Biomass growth significantly decreased the headspace volume of the chamber. However, this volume covered only 0.48-0.55% of the closed chamber volume at the maximum growth stage. During the whole cropping period, mean 0.24-0.28% of chamber headspace was allocated by plant biomass, and thus this level of total CH4 emissions was overestimated. However, this overestimation was much smaller than the errors coming from other investigation processes (i.e., chamber closing hour, temperature recording, inconstant flooding level, different soil environments, etc.) and rice physiological changes. In conclusion, the influence of physical biomass volume inside the closed chamber was negligible to make the error in total CH4 emission assessment in rice paddies.-
dc.language영어-
dc.language.isoENG-
dc.publisherPUBLIC LIBRARY SCIENCE-
dc.titleUncertainty of methane emissions coming from the physical volume of plant biomass inside the closed chamber was negligible during cropping period-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1371/journal.pone.0256796-
dc.identifier.scopusid2-s2.0-85115390432-
dc.identifier.wosid000707078200017-
dc.identifier.bibliographicCitationPLOS ONE, v.16, no.9-
dc.citation.titlePLOS ONE-
dc.citation.volume16-
dc.citation.number9-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusRICE ORYZA-SATIVA-
dc.subject.keywordPlusSOIL-TEMPERATURE-
dc.subject.keywordPlusSTATIC CHAMBERS-
dc.subject.keywordPlusGAS-TRANSPORT-
dc.subject.keywordPlusFIELDS-
dc.subject.keywordPlusCH4-
dc.subject.keywordPlusMITIGATION-
dc.subject.keywordPlusVEGETATION-
dc.subject.keywordPlusCULTIVARS-
dc.subject.keywordPlusCLIMATE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Pil Joo photo

Kim, Pil Joo
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE