Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

The Semi-Supervised Strategy of Machine Learning on the Gene Family Diversity to Unravel Resveratrol Synthesis

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Jun-Tae-
dc.contributor.authorWoo, Dong-U-
dc.contributor.authorLee, Yejin-
dc.contributor.authorChoi, Sung-Hoon-
dc.contributor.authorKang, Yang-Jae-
dc.date.accessioned2022-12-26T10:00:37Z-
dc.date.available2022-12-26T10:00:37Z-
dc.date.issued2021-10-
dc.identifier.issn2223-7747-
dc.identifier.issn2223-7747-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3193-
dc.description.abstractResveratrol is a phytochemical with medicinal benefits, being well-known for its presence in wine. Plants develop resveratrol in response to stresses such as pathogen infection, UV radiation, and other mechanical stress. The recent publications of genomic sequences of resveratrol-producing plants such as grape, peanut, and eucalyptus can expand our molecular understanding of resveratrol synthesis. Based on a gene family count matrix of Viridiplantae members, we uncovered important gene families that are common in resveratrol-producing plants. These gene families could be prospective candidates for improving the efficiency of synthetic biotechnology-based artificial resveratrol manufacturing.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleThe Semi-Supervised Strategy of Machine Learning on the Gene Family Diversity to Unravel Resveratrol Synthesis-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/plants10102058-
dc.identifier.scopusid2-s2.0-85116069255-
dc.identifier.wosid000711868300001-
dc.identifier.bibliographicCitationPLANTS-BASEL, v.10, no.10-
dc.citation.titlePLANTS-BASEL-
dc.citation.volume10-
dc.citation.number10-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPlant Sciences-
dc.relation.journalWebOfScienceCategoryPlant Sciences-
dc.subject.keywordPlusTRANS-RESVERATROL-
dc.subject.keywordPlusGENOME-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusCULTURES-
dc.subject.keywordAuthorresveratrol synthesis-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorgene family expansion-
dc.subject.keywordAuthorsynthetic biotechnology-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > Division of Life Sciences > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Yang Jae photo

Kang, Yang Jae
자연과학대학 (생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE