Detailed Information

Cited 4 time in webofscience Cited 8 time in scopus
Metadata Downloads

Deep Learning-aided Channel Allocation Scheme for WLAN

Full metadata record
DC Field Value Language
dc.contributor.authorLee, W.-
dc.contributor.authorSeo, J.-
dc.date.accessioned2023-04-14T07:40:35Z-
dc.date.available2023-04-14T07:40:35Z-
dc.date.issued2023-06-
dc.identifier.issn2162-2337-
dc.identifier.issn2162-2345-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/30875-
dc.description.abstractIn the wireless local area networks (WLANs) based on the IEEE 802.11 technology, the limited set of channels is shared by a large number of access points (APs), which inevitably results in severe co-channel interference (CCI) among APs utilizing the same set of channels. In order to improve the performance of data transmissions in WLANs, the channel allocation must be carried out with care by considering such CCI among APs. In this letter, we propose a deep learning (DL) based channel allocation scheme to minimize the overall CCI experienced by the APs, thereby improving the network’s performance. To this end, a deep neural network (DNN) structure and an unsupervised learning-based training methodology are designed. The performance evaluation demonstrates that the proposed DL-based scheme achieves near-optimal performance with low computational time complexity. IEEE-
dc.format.extent1-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleDeep Learning-aided Channel Allocation Scheme for WLAN-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LWC.2023.3257128-
dc.identifier.scopusid2-s2.0-85151356584-
dc.identifier.wosid001006038300015-
dc.identifier.bibliographicCitationIEEE Wireless Communications Letters, v.12, no.6, pp 1 - 1-
dc.citation.titleIEEE Wireless Communications Letters-
dc.citation.volume12-
dc.citation.number6-
dc.citation.startPage1-
dc.citation.endPage1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorChannel allocation-
dc.subject.keywordAuthorchannel allocation-
dc.subject.keywordAuthorco-channel interference-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorDeep neural network-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthoroptimization-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorWireless communication-
dc.subject.keywordAuthorWireless LAN-
dc.subject.keywordAuthorwireless LAN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Jun Bae photo

Seo, Jun Bae
IT공과대학 (AI정보공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE