Detailed Information

Cited 13 time in webofscience Cited 12 time in scopus
Metadata Downloads

Estimation of Turbulent Heat Fluxes and Gross Primary Productivity by Assimilating Land Surface Temperature and Leaf Area Index

Full metadata record
DC Field Value Language
dc.contributor.authorHe, Xinlei-
dc.contributor.authorXu, Tongren-
dc.contributor.authorBateni, Sayed M.-
dc.contributor.authorKi, Seo Jin-
dc.contributor.authorXiao, Jingfeng-
dc.contributor.authorLiu, Shaomin-
dc.contributor.authorSong, Lisheng-
dc.contributor.authorHe, Xiangping-
dc.date.accessioned2022-12-26T09:46:17Z-
dc.date.available2022-12-26T09:46:17Z-
dc.date.issued2021-11-
dc.identifier.issn0043-1397-
dc.identifier.issn1944-7973-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3081-
dc.description.abstractIn this study, land surface temperature (LST) and leaf area index (LAI) observations are merged with a coupled two-source surface energy budget-vegetation dynamic model (TSEB-VDM) via a variational data assimilation (VDA) system to predict turbulent heat fluxes and gross primary productivity (GPP). The TSEB and VDM are coupled by relating photosynthesis in the VDM to transpiration in the TSEB equation. Unknown parameters of the VDA approach are the neutral bulk heat transfer coefficient (C-HN), evaporative fractions for soil and canopy (EFS and EFC), and specific leaf area (c(g)). The VDA approach is evaluated at six AmeriFlux sites with distinct vegetative and climatic characteristics. The modeled sensible (H) and latent (LE) heat fluxes, and GPP agree well with the corresponding eddy covariance measurements in different environmental conditions. The six-site average root mean square error (RMSE) of estimated daily H, LE, and GPP is 42.2 W m(-2), 51.5 W m(-2), and 1.8 gC m(-2) d(-1), respectively. The outcomes show that the developed VDA approach is able to exploit the implicit information in the sequences of LST and LAI measurements to estimate H, LE, and GPP. Our findings also indicate that the estimates of the H and LE are more sensitive to uncertainties in LST measurements, while the GPP retrievals are more affected by uncertainties in the LAI observations.-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Geophysical Union-
dc.titleEstimation of Turbulent Heat Fluxes and Gross Primary Productivity by Assimilating Land Surface Temperature and Leaf Area Index-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1029/2020WR028224-
dc.identifier.scopusid2-s2.0-85119867798-
dc.identifier.wosid000723106900043-
dc.identifier.bibliographicCitationWater Resources Research, v.57, no.11-
dc.citation.titleWater Resources Research-
dc.citation.volume57-
dc.citation.number11-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaMarine & Freshwater Biology-
dc.relation.journalResearchAreaWater Resources-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryLimnology-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.subject.keywordPlusWATER-USE EFFICIENCY-
dc.subject.keywordPlusDRY-MATTER CONTENT-
dc.subject.keywordPlusNET ECOSYSTEM EXCHANGE-
dc.subject.keywordPlusSOIL-MOISTURE-
dc.subject.keywordPlusVARIATIONAL ASSIMILATION-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusEXTINCTION COEFFICIENT-
dc.subject.keywordPlusVEGETATION DYNAMICS-
dc.subject.keywordPlusLIGHT-ABSORPTION-
dc.subject.keywordPlusCOMBINING MODIS-
dc.subject.keywordAuthorsensible and latent heat fluxes-
dc.subject.keywordAuthorgross primary productivity-
dc.subject.keywordAuthorvariational data assimilation-
dc.subject.keywordAuthorland surface temperature-
dc.subject.keywordAuthorleaf area index-
Files in This Item
There are no files associated with this item.
Appears in
Collections
건설환경공과대학 > 환경공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ki, Seo Jin photo

Ki, Seo Jin
건설환경공과대학 (환경공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE