Detailed Information

Cited 1 time in webofscience Cited 4 time in scopus
Metadata Downloads

Compressed Feedback Using AutoEncoder Based on Deep Learning for D2D Communication Networks

Full metadata record
DC Field Value Language
dc.contributor.authorBan, T.-
dc.date.accessioned2023-03-24T09:43:30Z-
dc.date.available2023-03-24T09:43:30Z-
dc.date.issued2023-04-
dc.identifier.issn2162-2337-
dc.identifier.issn2162-2345-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/30481-
dc.description.abstractIn this paper, we propose a feedback reduction scheme based on AutoEncoder and deep reinforcement learning for frequency division duplex (FDD) overlay device-to-device (D2D) communication networks. All D2D receivers and transmitters are equipped with an Encoder and Decoder, respectively, of the trained AutoEncoder. The D2D receivers compress the feedback information using the Encoder before transmitting while the transmitters decompress the received feedback information. We also employ a dueling deep Q network (DQN) to allow each D2D transmitter to autonomously determine whether to transmit data based on the decompressed feedback information. The performance of the proposed feedback reduction scheme is analyzed in terms of the average MSE of the AutoEncoder and the average sum-rate of a D2D communication network. Our numerical results show that the proposed feedback reduction scheme using the AutoEncoder can achieve 100%, 89%, and 86% of the average sum-rate of the perfect feedback scheme with no compression when the signal-to-noise ratio is 10dB, -5dB, and -20dB, respectively, while reducing the feedback by 50%. IEEE-
dc.format.extent1-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleCompressed Feedback Using AutoEncoder Based on Deep Learning for D2D Communication Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LWC.2023.3234574-
dc.identifier.scopusid2-s2.0-85147279643-
dc.identifier.wosid000970510700005-
dc.identifier.bibliographicCitationIEEE Wireless Communications Letters, v.12, no.4, pp 1 - 1-
dc.citation.titleIEEE Wireless Communications Letters-
dc.citation.volume12-
dc.citation.number4-
dc.citation.startPage1-
dc.citation.endPage1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusPOWER-CONTROL-
dc.subject.keywordPlusINFORMATION-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordAuthorAutoEncoder-
dc.subject.keywordAuthorCommunication networks-
dc.subject.keywordAuthorDecoding-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorDevice-to-device (D2D)-
dc.subject.keywordAuthorDevice-to-device communication-
dc.subject.keywordAuthordueling deep Q network (DQN)-
dc.subject.keywordAuthorfeedback reduction-
dc.subject.keywordAuthorReceivers-
dc.subject.keywordAuthorSignal to noise ratio-
dc.subject.keywordAuthorTransmitters-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ban, Tae Won photo

Ban, Tae Won
IT공과대학 (AI정보공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE