Detailed Information

Cited 9 time in webofscience Cited 13 time in scopus
Metadata Downloads

Robust Transmit Power Control With Imperfect CSI Using a Deep Neural Network

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Woongsup-
dc.contributor.authorLee, Kisong-
dc.date.accessioned2022-12-26T09:46:08Z-
dc.date.available2022-12-26T09:46:08Z-
dc.date.issued2021-11-
dc.identifier.issn0018-9545-
dc.identifier.issn1939-9359-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/3042-
dc.description.abstractIn this paper, a robust transmit power control scheme is proposed for multi-channel underlay device-to-device (D2D) communications with imperfect channel state information (CSI). The transmit power of the D2D user equipment (DUE) on each channel is optimized to maximize the average spectral efficiency (SE) whilst maintaining the quality-of-service (QoS) of the cellular user equipment (CUE) in the presence of errors in the CSI. To this end, we propose a novel deep neural network (DNN) structure and training methodology, in which artificially distorted CSI is used to compensate for the effect of imperfect CSI, such that a robust transmit power control strategy against channel error can be derived. Our simulation results show that even when the CSI is inaccurate, in our proposed scheme the degradation of the average SE can be kept low whilst maintaining negligible QoS violation, thereby confirming its effectiveness and robustness.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleRobust Transmit Power Control With Imperfect CSI Using a Deep Neural Network-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TVT.2021.3113051-
dc.identifier.scopusid2-s2.0-85115134701-
dc.identifier.wosid000720520400095-
dc.identifier.bibliographicCitationIEEE Transactions on Vehicular Technology, v.70, no.11, pp 12266 - 12271-
dc.citation.titleIEEE Transactions on Vehicular Technology-
dc.citation.volume70-
dc.citation.number11-
dc.citation.startPage12266-
dc.citation.endPage12271-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalWebOfScienceCategoryTransportation Science & Technology-
dc.subject.keywordPlusRESOURCE-ALLOCATION-
dc.subject.keywordPlusD2D COMMUNICATIONS-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordAuthorPower control-
dc.subject.keywordAuthorDevice-to-device communication-
dc.subject.keywordAuthorQuality of service-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorInterference-
dc.subject.keywordAuthorChannel estimation-
dc.subject.keywordAuthorResource management-
dc.subject.keywordAuthorDeep neural network-
dc.subject.keywordAuthorimperfect channel state information-
dc.subject.keywordAuthorrobust power control-
dc.subject.keywordAuthorunderlay D2D-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE