Cited 13 time in
Robust Transmit Power Control With Imperfect CSI Using a Deep Neural Network
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Woongsup | - |
| dc.contributor.author | Lee, Kisong | - |
| dc.date.accessioned | 2022-12-26T09:46:08Z | - |
| dc.date.available | 2022-12-26T09:46:08Z | - |
| dc.date.issued | 2021-11 | - |
| dc.identifier.issn | 0018-9545 | - |
| dc.identifier.issn | 1939-9359 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/3042 | - |
| dc.description.abstract | In this paper, a robust transmit power control scheme is proposed for multi-channel underlay device-to-device (D2D) communications with imperfect channel state information (CSI). The transmit power of the D2D user equipment (DUE) on each channel is optimized to maximize the average spectral efficiency (SE) whilst maintaining the quality-of-service (QoS) of the cellular user equipment (CUE) in the presence of errors in the CSI. To this end, we propose a novel deep neural network (DNN) structure and training methodology, in which artificially distorted CSI is used to compensate for the effect of imperfect CSI, such that a robust transmit power control strategy against channel error can be derived. Our simulation results show that even when the CSI is inaccurate, in our proposed scheme the degradation of the average SE can be kept low whilst maintaining negligible QoS violation, thereby confirming its effectiveness and robustness. | - |
| dc.format.extent | 6 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Institute of Electrical and Electronics Engineers | - |
| dc.title | Robust Transmit Power Control With Imperfect CSI Using a Deep Neural Network | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/TVT.2021.3113051 | - |
| dc.identifier.scopusid | 2-s2.0-85115134701 | - |
| dc.identifier.wosid | 000720520400095 | - |
| dc.identifier.bibliographicCitation | IEEE Transactions on Vehicular Technology, v.70, no.11, pp 12266 - 12271 | - |
| dc.citation.title | IEEE Transactions on Vehicular Technology | - |
| dc.citation.volume | 70 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 12266 | - |
| dc.citation.endPage | 12271 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalResearchArea | Transportation | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Transportation Science & Technology | - |
| dc.subject.keywordPlus | RESOURCE-ALLOCATION | - |
| dc.subject.keywordPlus | D2D COMMUNICATIONS | - |
| dc.subject.keywordPlus | OPTIMIZATION | - |
| dc.subject.keywordAuthor | Power control | - |
| dc.subject.keywordAuthor | Device-to-device communication | - |
| dc.subject.keywordAuthor | Quality of service | - |
| dc.subject.keywordAuthor | Optimization | - |
| dc.subject.keywordAuthor | Interference | - |
| dc.subject.keywordAuthor | Channel estimation | - |
| dc.subject.keywordAuthor | Resource management | - |
| dc.subject.keywordAuthor | Deep neural network | - |
| dc.subject.keywordAuthor | imperfect channel state information | - |
| dc.subject.keywordAuthor | robust power control | - |
| dc.subject.keywordAuthor | underlay D2D | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
