Detailed Information

Cited 6 time in webofscience Cited 7 time in scopus
Metadata Downloads

Generative Adversarial Networks for DNA Storage Channel Simulator

Full metadata record
DC Field Value Language
dc.contributor.authorKang, Sanghoon-
dc.contributor.authorGao, Yunfei-
dc.contributor.authorJeong, Jaeho-
dc.contributor.authorPark, Seong-Joon-
dc.contributor.authorKim, Jae-Won-
dc.contributor.authorNo, Jong-Seon-
dc.contributor.authorJeon, Hahyeon-
dc.contributor.authorLee, Jeong Wook-
dc.contributor.authorKim, Sunghwan-
dc.contributor.authorPark, Hosung-
dc.contributor.authorNo, Albert-
dc.date.accessioned2023-03-24T08:54:08Z-
dc.date.available2023-03-24T08:54:08Z-
dc.date.issued2023-01-
dc.identifier.issn2169-3536-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/30370-
dc.description.abstractDNA data storage systems have rapidly developed with novel error-correcting techniques, random access algorithms, and query systems. However, designing an algorithm for DNA storage systems is challenging, mainly due to the unpredictable nature of errors and the extremely high price of experiments. Thus, a simulator is of interest that can imitate the error statistics of a DNA storage system and replace the experiments in developing processes. We introduce novel generative adversarial networks that learn DNA storage channel statistics. Our simulator takes oligos (DNA sequences to write) as an input and generates a FASTQ file that includes output DNA reads and quality scores as if the oligos are synthesized and sequenced. We trained the proposed simulator with data from a single experiment consisting of 14,400 input oligo strands and 12,108,573 output reads. The error statistics between the input and the output of the trained generator match the actual error statistics, including the error rate at each position, the number of errors for each nucleotide, and high-order statistics.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleGenerative Adversarial Networks for DNA Storage Channel Simulator-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ACCESS.2023.3235201-
dc.identifier.scopusid2-s2.0-85147306785-
dc.identifier.wosid000915828200001-
dc.identifier.bibliographicCitationIEEE Access, v.11, pp 3781 - 3793-
dc.citation.titleIEEE Access-
dc.citation.volume11-
dc.citation.startPage3781-
dc.citation.endPage3793-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusDIGITAL INFORMATION-
dc.subject.keywordPlusSEQUENCE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusROBUST-
dc.subject.keywordAuthorDNA-
dc.subject.keywordAuthorGenerators-
dc.subject.keywordAuthorSequential analysis-
dc.subject.keywordAuthorGenerative adversarial networks-
dc.subject.keywordAuthorTransformers-
dc.subject.keywordAuthorHidden Markov models-
dc.subject.keywordAuthorError analysis-
dc.subject.keywordAuthorRecurrent neural networks-
dc.subject.keywordAuthorChannel simulator-
dc.subject.keywordAuthorDNA storage-
dc.subject.keywordAuthorgenerative adversarial networks-
dc.subject.keywordAuthorrecurrent neural networks-
dc.subject.keywordAuthortransformer-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 전자공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jae Won photo

Kim, Jae Won
IT공과대학 (전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE