Detailed Information

Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads

A machine-learning interatomic potential to understand primary radiation damage of silicon

Full metadata record
DC Field Value Language
dc.contributor.authorNiu, H.-
dc.contributor.authorZhao, J.-
dc.contributor.authorLi, H.-
dc.contributor.authorSun, Y.-
dc.contributor.authorPark, J.H.-
dc.contributor.authorJing, Y.-
dc.contributor.authorLi, W.-
dc.contributor.authorYang, J.-
dc.contributor.authorLi, X.-
dc.date.accessioned2023-01-18T08:01:02Z-
dc.date.available2023-01-18T08:01:02Z-
dc.date.issued2023-02-
dc.identifier.issn0927-0256-
dc.identifier.issn1879-0801-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/30117-
dc.description.abstractHarsh radiation environments cause displacement damages in semiconductor components, resulting in performance degradation. Molecular simulations provide a unique approach to study the dynamic processes of radiation-induced defect production, clustering, and evolution to design and reinforce novel semiconductor components. In this paper, we developed a more efficient machine learning (ML) potential with DFT accuracy to investigate the radiation damage in silicon material. The accuracy of the potential was verified by comparing the static properties, defect formation energy, and threshold displacement energy with experiments and DFT data. By simulating the excitation of a single PKA we found that with the ML potential PKA has an impact over a larger spatial area compared to the empirical potentials. Finally, by simulating multiple PKA excitations in sequence, we found that the first several excited PKAs produce an amorphous region. For the later excited PKAs, the energies are dissipated when they cross through the amorphous region, resulting in a 36% decrease in newly generated defects. © 2022 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleA machine-learning interatomic potential to understand primary radiation damage of silicon-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.commatsci.2022.111970-
dc.identifier.scopusid2-s2.0-85145589284-
dc.identifier.wosid000907020400001-
dc.identifier.bibliographicCitationComputational Materials Science, v.218-
dc.citation.titleComputational Materials Science-
dc.citation.volume218-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusTHRESHOLD DISPLACEMENT ENERGIES-
dc.subject.keywordPlusCOMPUTER-SIMULATION-
dc.subject.keywordPlusELASTIC-CONSTANTS-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusDIVACANCIES-
dc.subject.keywordPlusIONIZATION-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusCASCADES-
dc.subject.keywordPlusPOINT-
dc.subject.keywordPlusORDER-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMolecular dynamics simulations-
dc.subject.keywordAuthorPrimary radiation damage-
dc.subject.keywordAuthorSilicon-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jae Hyun photo

Park, Jae Hyun
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE