Cited 0 time in
TWO NEW PROJECTION ALGORITHMS FOR VARIATIONAL INEQUALITIES IN HILBERT SPACES
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Tan, Bing | - |
| dc.contributor.author | Cho, Sun Young | - |
| dc.date.accessioned | 2023-01-05T07:40:01Z | - |
| dc.date.available | 2023-01-05T07:40:01Z | - |
| dc.date.issued | 2022-11 | - |
| dc.identifier.issn | 1345-4773 | - |
| dc.identifier.issn | 1880-5221 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/30079 | - |
| dc.description.abstract | In this paper, two new projection-type algorithms arc introduced for solving pseudomonotone variational inequalities in real Hilbert spaces. The proposed methods use two non-monotonic step sizes allowing them to work adaptively without the prior information of the Lipschitz constant of the operator. Strong convergence theorems for the proposed methods are established under suitable conditions. A fundamental numerical example is given to verify the efficiency of the suggested methods in comparison with some known ones. | - |
| dc.format.extent | 12 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Yokohama Publishers | - |
| dc.title | TWO NEW PROJECTION ALGORITHMS FOR VARIATIONAL INEQUALITIES IN HILBERT SPACES | - |
| dc.type | Article | - |
| dc.publisher.location | 일본 | - |
| dc.identifier.scopusid | 2-s2.0-85174948399 | - |
| dc.identifier.wosid | 000893658300003 | - |
| dc.identifier.bibliographicCitation | Journal of Nonlinear and Convex Analysis, v.23, no.11, pp 2523 - 2534 | - |
| dc.citation.title | Journal of Nonlinear and Convex Analysis | - |
| dc.citation.volume | 23 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 2523 | - |
| dc.citation.endPage | 2534 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE | - |
| dc.subject.keywordPlus | NONEXPANSIVE-MAPPINGS | - |
| dc.subject.keywordPlus | EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | SPLITTING METHOD | - |
| dc.subject.keywordAuthor | Variational inequality | - |
| dc.subject.keywordAuthor | subgradient extragradient method | - |
| dc.subject.keywordAuthor | inertial method | - |
| dc.subject.keywordAuthor | shrinking projection method | - |
| dc.subject.keywordAuthor | pseudomonotone mapping | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
