Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entryopen access
- Authors
- Singh, Pooja; Kumar, Vikas; Lee, Gihwan; Jung, Tae Sung; Ha, Min Woo; Hong, Jong Chan; Lee, Keun Woo
- Issue Date
- Dec-2022
- Publisher
- Multidisciplinary Digital Publishing Institute (MDPI)
- Keywords
- CCR5; HIV; pharmacophore modeling; molecular docking studies; molecular dynamics simulations analysis; inhibitors; pharmacokinetic properties
- Citation
- International Journal of Molecular Sciences, v.23, no.24
- Indexed
- SCIE
SCOPUS
- Journal Title
- International Journal of Molecular Sciences
- Volume
- 23
- Number
- 24
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/30061
- DOI
- 10.3390/ijms232416122
- ISSN
- 1661-6596
1422-0067
- Abstract
- Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 수의과대학 > Department of Veterinary Medicine > Journal Articles
- 학과간협동과정 > 바이오의료빅데이터학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.