Cited 5 time in
Ensemble deep learning based resource allocation for multi-channel underlay cognitive radio system
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, W. | - |
| dc.contributor.author | Chung, B.C. | - |
| dc.date.accessioned | 2023-01-05T01:08:01Z | - |
| dc.date.available | 2023-01-05T01:08:01Z | - |
| dc.date.issued | 2023-08 | - |
| dc.identifier.issn | 2405-9595 | - |
| dc.identifier.issn | 2405-9595 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/30020 | - |
| dc.description.abstract | This paper proposes a resource allocation strategy for multi-channel underlay cognitive radio (CR) systems by means of an ensemble deep learning framework. The transmit power of secondary users (SUs) allocated to each channel is determined to maximize the overall spectral efficiency (SE), whilst meeting the interference constraint on the primary user (PU). To this end, a deep neural network (DNN) structure is developed, in which multiple DNN units are jointly utilized, to obtain the diversity over different DNNs. Our simulation results confirm that the proposed scheme can achieve near-optimal performance with a low computation time of less than 1.5 ms. © 2022 The Authors | - |
| dc.format.extent | 6 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Korean Institute of Communication Sciences | - |
| dc.title | Ensemble deep learning based resource allocation for multi-channel underlay cognitive radio system | - |
| dc.title.alternative | Ensemble deep learning based resource allocation for multi-channel underlay cognitive radio system | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.1016/j.icte.2022.08.009 | - |
| dc.identifier.scopusid | 2-s2.0-85138811408 | - |
| dc.identifier.wosid | 001066772400001 | - |
| dc.identifier.bibliographicCitation | ICT Express, v.9, no.4, pp 642 - 647 | - |
| dc.citation.title | ICT Express | - |
| dc.citation.volume | 9 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 642 | - |
| dc.citation.endPage | 647 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002992344 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordPlus | TO-DEVICE COMMUNICATIONS | - |
| dc.subject.keywordPlus | TRANSMIT POWER-CONTROL | - |
| dc.subject.keywordPlus | NETWORKS | - |
| dc.subject.keywordPlus | QOS | - |
| dc.subject.keywordAuthor | Deep learning | - |
| dc.subject.keywordAuthor | Ensemble machine learning | - |
| dc.subject.keywordAuthor | Non-convex optimization | - |
| dc.subject.keywordAuthor | Resource allocation | - |
| dc.subject.keywordAuthor | Underlay cognitive radio | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
